Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(35): 8956-8963, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39185714

RESUMEN

Graphene has demonstrated potential for use in neuromorphic electronics due to its superior electrical properties. However, these devices are all based on graphene sheets without patterning, restricting its applications. Here, we demonstrate a graphene nanoribbon synaptic transistor (GNST), with the graphene nanoribbon (GNR) channels fabricated using an electro-hydrodynamically printed nanowire array as lithographic masks for scalable fabrication. The GNST shows tunable synaptic plasticity by spike duration, frequency, and number. Moreover, the device is energy-efficient and ambipolar and shows a regulated response by nanoribbon width. The characteristics of GNSTs are applicable to pattern recognition, showing an accuracy of 84.5%. The device is applicable to Pavlov's classical conditioning. This study reports the first synaptic transistor based on GNRs, providing new insights into future neuromorphic electronics.

2.
Nano Lett ; 24(15): 4336-4345, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38567915

RESUMEN

This study demonstrates the conceptual design and fabrication of a vertically integrated monolithic (VIM) neuromorphic device. The device comprises an n-type SnO2 nanowire bottom channel connected by a shared gate to a p-type P3HT nanowire top channel. This architecture establishes two distinct neural pathways with different response behaviors. The device generates excitatory and inhibitory postsynaptic currents, mimicking the corelease mechanism of bilingual synapses. To enhance the signal processing efficiency, we employed a bipolar spike encoding strategy to convert fluctuating sensory signals to spike trains containing positive and negative pulses. Utilizing the neuromorphic platform for synaptic processing, physiological signals featuring bidirectional fluctuations, including electrocardiogram and breathing signals, can be classified with an accuracy of over 90%. The VIM device holds considerable promise as a solution for developing highly integrated neuromorphic hardware for healthcare and edge intelligence applications.


Asunto(s)
Nanocables , Sinapsis
3.
Nat Commun ; 14(1): 7181, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935671

RESUMEN

We demonstrate an artificially-intelligent cornea that can assume the functions of the native human cornea such as protection, tactile perception, and light refraction, and possesses sensory expansion and interactive functions. These functions are realized by an artificial corneal reflex arc that is constructed to implement mechanical and light information coding, information processing, and the regulation of transmitted light. Digitally-aligned, long and continuous zinc tin oxide (ZTO) semiconductor fabric patterns were fabricated as the active channels of the artificial synapse, which are non-toxic, heavy-metal-free, low-cost, and ensure superior comprehensive optical properties (transmittance >99.89%, haze <0.36%). Precisely-tuned crystal-phase structures of the ZTO fibers enabled reconfigurable synaptic plasticity, which is applicable to encrypted communication and associative learning. This work suggests new strategies for the tuning of synaptic plasticity and the design of visual neuroprosthetics, and has important implications for the development of neuromorphic electronics and for visual restoration.


Asunto(s)
Percepción del Tacto , Óxido de Zinc , Humanos , Tacto , Electrónica , Inteligencia , Córnea
4.
Mater Horiz ; 10(12): 5753-5762, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37807818

RESUMEN

The iris of an eye automatically optimizes the amount of light that strikes the retina by accommodating the intensity of ambient light. Here, we describe a retinomorphic neuron using neuromorphic photoreceptors for artificial vision and iris accommodation that mimics the biological structure and processing functions of retinal neurons for light sensing and signal transduction. The system consists of a neuromorphic photoreceptor, an electrochromic device as a light filter, and a spike-generation unit. In particular, the Au nanoparticle (NP) decorated ITO fiber photoreceptor with a well-aligned array structure is able to rely on its own light-tunable synaptic plasticity and the plasmon-enhanced light absorption. Therefore, it allows real-time feedback about light intensity, emits a higher-frequency electrical stimulus to stronger light, flash, or prolonged light illumination time, and drives the electrochromic filter to work, allowing mild light to pass through. Compared with traditional artificial irises or artificial photoreceptors, our design introduces neural pathways and neuromorphic devices, which are closer to biological functions in simulation. To our knowledge, this is the first time that a retinal neuron with neuromorphic photoreceptors has been used for artificial iris vision. Furthermore, we demonstrate direct and consensual pupillary light reflexes. The design of artificial iris vision has potential applications in biomimetic engineering, smart interaction, and visual prostheses.


Asunto(s)
Oro , Nanopartículas del Metal , Visión Ocular , Neuronas , Iris
5.
Nano Lett ; 23(18): 8743-8752, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37698378

RESUMEN

A mixed-dimensional dual-channel synaptic transistor composed of inorganic nanoparticles and organic nanowires was fabricated to expand the photoelectric gain range. The device can actualize the sensitization features of the nociceptor and shows improved responsiveness to visible light. Under electrical pulses with different polarities, the apparatus exhibits reconfigurable asymmetric bidirectional plasticity. Moreover, the devices demonstrate good operational tolerance and mechanical stability, retaining more than 60% of their maximum responsiveness after 100 consecutive/bidirectional and 1000 flex/flat operations. The improved photoelectric response of the device endows a high image recognition accuracy of greater than 80%. Asymmetric bidirectional plasticity is used as punishment/reward in a psychological experiment to emulate the improvement of learning motivation and enables real-time forward and backward deflection (+7 and -25°) of artificial muscle. The mixed-dimensional optoelectronic artificial synapses with switchable behavior and electron/hole transport type have important prospects for neuromorphic processing and artificial somatosensory nerves.

6.
Nat Commun ; 14(1): 1344, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906637

RESUMEN

Perceptual enhancement of neural and behavioral response due to combinations of multisensory stimuli are found in many animal species across different sensory modalities. By mimicking the multisensory integration of ocular-vestibular cues for enhanced spatial perception in macaques, a bioinspired motion-cognition nerve based on a flexible multisensory neuromorphic device is demonstrated. A fast, scalable and solution-processed fabrication strategy is developed to prepare a nanoparticle-doped two-dimensional (2D)-nanoflake thin film, exhibiting superior electrostatic gating capability and charge-carrier mobility. The multi-input neuromorphic device fabricated using this thin film shows history-dependent plasticity, stable linear modulation, and spatiotemporal integration capability. These characteristics ensure parallel, efficient processing of bimodal motion signals encoded as spikes and assigned with different perceptual weights. Motion-cognition function is realized by classifying the motion types using mean firing rates of encoded spikes and postsynaptic current of the device. Demonstrations of recognition of human activity types and drone flight modes reveal that the motion-cognition performance match the bio-plausible principles of perceptual enhancement by multisensory integration. Our system can be potentially applied in sensory robotics and smart wearables.


Asunto(s)
Encéfalo , Robótica , Animales , Humanos , Encéfalo/fisiología , Percepción Espacial , Cognición , Señales (Psicología) , Mamíferos , Percepción Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA