Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chin Med ; 17(1): 83, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794585

RESUMEN

BACKGROUND: Alzheimer's Disease (AD) is a serious neurodegenerative disease and there is currently no effective treatment for AD progression. The use of TCM as a potential treatment strategy for AD is an evolving field of investigation. Asafoetida (ASF), an oleo-gum-resin isolated from Ferula assa-foetida root, has been proven to possess antioxidative potential and neuroprotective effects, which is closely associated with the neurological disorders. However, the efficacy and further mechanisms of ASF in AD experimental models are still unclear. METHODS: A cognitive impairment of mouse model induced by scopolamine was established to determine the neuroprotective effects of ASF in vivo, as shown by behavioral tests, biochemical assays, Nissl staining, TUNEL staining, Immunohistochemistry, western blot and qPCR. Furthermore, the PC12 cells stimulated by H2O2 were applied to explore the underlying mechanisms of ASF-mediated efficacy. Then, the UPLCM analysis and integrated network pharmacology approach was utilized to identified the main constitutes of ASF and the potential target of ASF against AD, respectively. And the main identified targets were validated in vitro by western blot, qPCR and immunofluorescence staining. RESULTS: In vivo, ASF treatment significantly ameliorated cognitive impairment induced by scopolamine, as evidenced by improving learning and memory abilities, and reducing neuronal injury, cholinergic system impairment, oxidative stress and apoptosis in the hippocampus of mice. In vitro, our results validated that ASF can dose-dependently attenuated H2O2-induced pathological oxidative stress in PC12 cells by inhibiting ROS and MDA production, as well as promoting the activities of SOD, CAT, GSH. We also found that ASF can significantly suppressed the apoptosis rate of PC12 cells increased by H2O2 exposure, which was confirmed by flow cytometry analysis. Moreover, treatment with ASF obviously attenuated H2O2-induced increase in caspase-3 and Bax expression levels, as well as decrease in Bcl-2 protein expression. KEGG enrichment analysis indicated that the PI3K/Akt/GSK3ß/Nrf2 /HO-1pathway may be involved in the regulation of cognitive impairment by ASF. The results of western blot, qPCR and immunofluorescence staining of vitro assay proved it. CONCLUSIONS: Collectively, our work first uncovered the significant neuroprotective effect of ASF in treating AD in vivo. Then, we processed a series of vitro experiments to clarify the biological mechanism action. These data demonstrate that ASF can inhibit oxidative stress induced neuronal apoptosis to foster the prevention of AD both in vivo and in vitro, and it may exert the function of inhibiting AD through PI3K/Akt/GSK3ß/Nrf2/HO-1pathway.

2.
Front Pharmacol ; 13: 817213, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295332

RESUMEN

Background: Alzheimer's disease (AD) as an age-related, irreversible neurodegenerative disease, characterized by cognitive dysfunction, has become progressively serious with a global rise in life expectancy. As the failure of drug elaboration, considerable research effort has been devoted to developing therapeutic strategies for treating AD. TCM is gaining attention as a potential treatment for AD. Gastrodia elata Blume, Polygala tenuifolia Willd., Cistanche deserticola Ma, Rehmannia lutinosa (Gaertn.)DC., Acorus gramineus Aiton, and Curcuma longa L. (GPCRAC) are all well-known Chinese herbs with neuroprotective benefits and are widely used in traditional Chinese decoction for AD therapy. However, the efficacy and further mechanisms of GPCRAC extracts in AD experimental models are still unclear. The purpose of this study was to investigate the synergistic protective efficacy of GPCRAC extracts (composed of extracts from these six Chinese medicines), and the protein targets mediated by GPCRAC extracts in treating AD. Methods: Scopolamine-induced cognitive impairment mouse model was established to determine the neuroprotective effects of GPCRAC extracts in vivo, as shown by behavioral tests and cerebral cholinergic function assays. To identify the potential molecular mechanism of GPCRAC extracts against AD, label-free quantitative proteomics coupled with tandem mass spectrometry (LC-MS/MS) were performed. The integrated bioinformatics analysis was applied to screen the core differentially expressed proteins in vital canonical pathways. Critical altered proteins were validated by qPCR and Western blotting. Results: Administration of GPCRAC extracts significantly recovered scopolamine-induced cognitive impairment, as evidenced by the improved learning and memory ability, increased Ach content and ChAT activity, as well as decreased AchE activity in the hippocampus of mice. In total, 390 proteins with fold-change>1.2 or <0.83 and p < 0.05 were identified as significant differentially expressed proteins, of which 110 were significantly up-regulated and 25 were significantly down-regulated between control and model group. By mapping the significantly regulated proteins, we identified five hub proteins: PPP2CA, Gsk3ß, PP3CC, PRKACA, and BCL-2 that were associated with dopaminergic synapse and apoptosis signaling pathway, respectively. Western blotting and QPCR demonstrate that the expression levels of these core proteins could be significantly improved by the administration of GPCRAC extracts. These pathways and some of the identified proteins are implicated in AD pathogenesis. Conclusion: Administration of GPCRAC extracts was effective on alleviating scopolamine-induced cognitive impairment, which might be through modulation of dopaminergic synapse and apoptosis signaling pathway. Consequently, our quantitative proteome data obtained from scopolamine-treated model mice successfully characterized AD-related biological alterations and proposed novel protein biomarkers for AD.

3.
Int Immunopharmacol ; 101(Pt B): 108212, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34656907

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal fibrotic lung disease. However, there are insufficient drugs available for IPF treatment, and the currently used drugs are accompanied by many adverse reactions. Deficiency of vitamin D3 (VD3) in the development of IPF and the potential role of VD3 in the treatment of IPF have attracted increasing attention. In vivo experimental results showed that VD3 could increase the survival rate in bleomycin (BLM)-induced models, relieve lung inflammation, reduce hydroxyproline content, and inhibit collagen deposition and cell apoptosis. We further performed proteomics analysis and screened 251 target proteins that reflect VD3 intervention in BLM-induced animal models. These target proteins were involved in acute inflammation, oxidative stress, antioxidant activity and extracellular matrix binding. Combined with the comprehensive analysis of clinical samples, PSAT1 was screened out as a candidate target related to IPF disease and VD3 treatment. Through further computational analysis, the MAPK signaling pathway was considered to be the most probable candidate pathway for VD3 function targeting IPF. In in vivo experiments, VD3 inhibited BLM-induced expression of PSAT1 and phosphorylation of p38 and ERK1/2 in mouse lung tissue. The experiments of cell proliferation and western blot confirmed that VD3 inhibited the expression of PSAT1 and the activation of the mitogen-activated protein kinase (MAPK) pathway in human pulmonary fibroblasts (HPF). Furthermore, experiments with transfection plasmids overexpressing PSAT1 proved that VD3 could attenuate the proliferation and differentiation of HPF by suppressing the effect of PSAT1 on the MAPK signaling pathway. Finally, we confirmed that vitamin D receptor (VDR) could occupy the PSAT1 promoter to reveal the transcriptional regulation effect of VD3 on PSAT1. In conclusion, VD3 exerted a therapeutic effect on IPF by down-regulating the MAPK signaling pathway via targeting the expression of PSAT1.


Asunto(s)
Bleomicina/toxicidad , Colecalciferol/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Animales , Antibióticos Antineoplásicos/uso terapéutico , Hormonas y Agentes Reguladores de Calcio/uso terapéutico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria
4.
Front Pharmacol ; 12: 661129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995084

RESUMEN

Background: Pulmonary Fibrosis (PF) is an interstitial lung disease characterized by excessive accumulation of extracellular matrix in the lungs, which disrupts the structure and gas exchange of the alveoli. There are only two approved therapies for PF, nintedanib (Nib) and pirfenidone. Therefore, the use of Chinese medicine for PF is attracting attention. Tianlongkechuanling (TL) is an effective Chinese formula that has been applied clinically to alleviate PF, which can enhance lung function and quality of life. Purpose: The potential effects and specific mechanisms of TL have not been fully explored, yet. In the present study, proteomics was performed to explore the therapeutic protein targets of TL on Bleomycin (BLM)-induced Pulmonary Fibrosis. Method: BLM-induced PF mice models were established. Hematoxylineosin staining and Masson staining were used to analyze histopathological changes and collagen deposition. To screen the differential proteins expression between the Control, BLM, BLM + TL and BLM + Nib (BLM + nintedanib) groups, quantitative proteomics was performed using tandem mass tag (TMT) labeling with nanoLC-MS/MS [nano liquid chromatographymass spectrometry]). Changes in the profiles of the expressed proteins were analyzed using the bioinformatics tools Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The protein-protein interactions (PPI) were established by STRING. Expressions of α-smooth muscle actin (α-SMA), Collagen I (Col1a1), Fibronectin (Fn1) and enzymes in arginase-ornithine pathway were detected by Western blot or RT-PCR. Result: TL treatments significantly ameliorated BLM-induced collagen deposition in lung tissues. Moreover, TL can inhibit the protein expressions of α-SMA and the mRNA expressions of Col1a1 and Fn1. Using TMT technology, we observed 253 differentially expressed proteins related to PPI networks and involved different KEGG pathways. Arginase-ornithine pathway is highly significant. The expression of arginase1 (Arg1), carbamoyltransferase (OTC), carbamoy-phosphate synthase (CPS1), argininosuccinate synthase (ASS1), ornithine aminotransferase (OAT) argininosuccinate lyase (ASL) and inducible nitric oxide synthase (iNOS) was significantly decreased after TL treatments. Conclusion: Administration of TL in BLM-induced mice resulted in decreasing pulmonary fibrosis. Our findings propose that the down regulation of arginase-ornithine pathway expression with the reduction of arginase biosynthesis is a central mechanism and potential treatment for pulmonary fibrosis with the prevention of TL.

5.
J Ethnopharmacol ; 271: 113780, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33421600

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Epimedium brevicornu Maxim, Dioscorea nipponica Makino, and Salvia miltiorrhiza Bunge formula (EDS) are three traditional Chinese medicines commonly combined and used to treat osteoarthritis (OA). However, the mechanism of its therapeutic effect on OA is still unclear. AIM OF THE STUDY: The aim of this study was to investigate the potential anti osteoarthritis mechanism of EDS in the treatment of OA rats' model by quantitative proteomics. MATERIALS AND METHODS: A papain-induced rat OA model was established, and then EDS was intragastrically administered for 28 days. A label-free quantification proteomics was performed to evaluate the holistic efficacy of EDS against OA and identify the possible protein profiles mechanisms. The expression levels of critical changed proteins were validated by RT-qPCR and Western blotting. The effects of EDS were then assessed by evaluating pathologic changes in the affected knee joint and measuring pressure pain threshold, acoustic reflex threshold, angle of joint curvature. RESULTS: Proteomics analysis showed that 62 proteins were significantly upregulated and 208 proteins were downregulated in OA group compared to control group. The changed proteins were involved in activation of humoral immunity response, complement cascade activation, leukocyte mediated immunity, acute inflammatory response, endocytosis regulation, and proteolysis regulation. The EDS treatment partially restored the protein profile changes. The protective effects of EDS on pathologic changes in OA rats' knee joint and pain threshold assessment were consisted with the proteomics results. CONCLUSIONS: The results suggest that EDS exerted synergistic therapeutic efficacies to against OA through suppressing inflammation, modulating the immune system, relieving joint pain, and attenuating cartilage degradation.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Inmunidad/efectos de los fármacos , Inflamación/prevención & control , Osteoartritis/prevención & control , Animales , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Proteínas del Sistema Complemento/efectos de los fármacos , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Citocinas/sangre , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Inmunidad/genética , Inflamación/inmunología , Articulación de la Rodilla/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Osteoartritis/inducido químicamente , Osteoartritis/inmunología , Osteoartritis/patología , Umbral del Dolor/efectos de los fármacos , Papaína/toxicidad , Proteoma/efectos de los fármacos , Proteoma/genética , Proteoma/inmunología , Proteómica/métodos , Ratas Wistar , Proteínas Ribosómicas/efectos de los fármacos , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
6.
Front Pharmacol ; 11: 611794, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33746744

RESUMEN

Acute respiratory distress syndrome (ARDS) is a complex cascade that develops from acute lung injury (ALI). Ginseng can be used to treat ALI/ARDS. Studies have shown that some of ingredients in ginseng had anti-inflammation, antioxidative, and immune regulation effects and can protect alveolar epithelial cells in mice. However, the potential targets, biological processes, and pathways related to ginseng against ALI/ARDS have not been investigated systematically. We employed network pharmacology, molecular docking, and animal experiments to explore the therapeutic effects and underlying mechanism of action of ginseng against ALI/ARDS. We identified 25 compounds using ultrahigh-performance liquid chromatography Q-Orbitrap mass spectrometry and their 410 putative targets through database analyses. Sixty-nine of them were considered to be key targets of ginseng against ALI/ARDS according to overlapping with ALI/ARDS-related targets and further screening in a protein-protein interaction (PPI) network. The phosphatidylinositol 3-kinase-protein kinase B (PI3K-AkT) and mitogen-activated protein kinase (MAPK) pathways were recognized to have critical roles for ginseng in ALI/ARDS treatment. Signal transducer and activator of transcription (STAT) 3, vascular endothelial growth factor A (VEGFA), fibroblast growth factor (FGF) 2, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), MAPK1, and interleukin (IL) 2 were the top six nodes identified by analyses of a compound-target-pathway network. Molecular docking showed that most of the ingredients in ginseng could combine well with the six nodes. Ginseng could reduce the pathologic damage, neutrophil aggregation, proinflammatory factors, and pulmonary edema in vivo and inhibit the PI3K-Akt signaling pathway and MAPK signaling pathway through downregulating expressions of STAT3, VEGFA, FGF2, PIK3CA, MAPK1, and IL2. Our study provides a theoretical basis for ginseng treatment of ALI/ARDS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...