Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
Environ Sci Technol ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254632

RESUMEN

We propose coupling electrochemical leaching with solvent extraction to separate and recover Li and Co from spent lithium-ion batteries (LIBs). Electrochemical leaching occurs in the aqueous electrolyte for converting solid LiCoO2 into soluble Li+ and Co2+, in which electrons act as reductants to reduce Co(III) to Co(II). Simultaneously, solvent extraction occurs at the interface of aqueous and organic phases to separate Co2+ and Li+. By capturing and utilizing the protons from P507, leaching yields for both Co and Li exceed ∼7 times than acid leaching without solvent extraction. The extraction efficiency of Co2+ reaches 86% at 60 °C, 3.5 V, while simultaneously retaining the majority of Li+ in the H2SO4 solution. The total leaching amount was improved because the organic phase provides protons to help the leaching of Co2+, and the continuous extraction process of Co(II) maintains the low Co2+ concentration in the aqueous solution. The synergistic interaction between electrochemical leaching and solvent extraction processes significantly reduces the consumption of chemicals, enhances the utilization efficiency of protons, and simplifies the recovery process. The leaching kinetics of Li and Co both conforms well to the residue layer diffusion control model and the activation energy (Ea) values of the leaching for Li and Co are 4.03 and 7.80 kJ/mol, respectively. Lastly, the economic and environmental assessment of this process also demonstrates the advantages of this method in reducing inputs, lowering environmental pollution, and enhancing economic benefits.

2.
J Hazard Mater ; 477: 135304, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39088957

RESUMEN

The utilization of biomass-assisted pyrolysis in the recycling of spent lithium-ion batteries has emerged as a promising and reliable process. This article furnishes theoretical underpinnings and analytical insights into this method, showcasing sawdust pyrolysis reduction as an efficient means to recycle spent LiMn2O4 and LiNi0.6Co0.2Mn0.2O2 batteries. Through advanced thermogravimetry-gas chromatography-mass spectrometry analysis complemented by traditional thermodynamic demonstration, the synergistic effects of biomass pyrolysis reduction are elucidated, with minor autodecomposition and major carbothermal and gasthermal reduction pathways identified. The controlled manipulation of transition metals has demonstrated the capability to modulate surface pyrolysis gas catalytic reactions and facilitate the preparation of composite materials with diverse morphologies. Optimization of process conditions has culminated in recovery efficiency exceeding 99.0 % for LiMn2O4 and 99.5 % for LiNi0.6Co0.2Mn0.2O2. Economic and environmental analyses underscore the advantages of biomass reduction and recycling for these two types of spent LIBs: low energy consumption, environmental compatibility, and high economic viability.

3.
Molecules ; 29(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39124958

RESUMEN

Constructing heterostructures from already synthesized two-dimensional materials is of significant importance. We performed a first-principles study to investigate the electronic properties and interfacial characteristics of Janus MoSH/WSi2N4 van der Waals heterostructure (vdWH) contacts. We demonstrate that the p-type Schottky formed by MoSH/WSi2N4 and MoHS/WSi2N4 has extremely low Schottky barrier heights (SBHs). Due to its excellent charge injection efficiency, Janus MoSH may be regarded as an effective metal contact for WSi2N4 semiconductors. Furthermore, the interfacial characteristics and electronic structure of Janus MoSH/WSi2N4 vdWHs can not only reduce/eliminate SBH, but also forms the transition from p-ShC to n-ShC type and from Schottky contact (ShC) to Ohmic contact (OhC) through the layer spacing and electric field. Our results can offer a fresh method for optoelectronic applications based on metal/semiconductor Janus MoSH/WSi2N4 vdW heterostructures, which have strong potential in optoelectronic applications.

4.
Cell Death Dis ; 15(7): 538, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075053

RESUMEN

Glioma, a malignant and infiltrative neoplasm of the central nervous system, poses a significant threat due to its high mortality rates. Branched-chain amino acid transaminase 1 (BCAT1), a key enzyme in branched-chain amino acid (BCAA) catabolism, exhibits elevated expression in gliomas and correlates strongly with poor prognosis. Nonetheless, the regulatory mechanisms underlying this increased BCAT1 expression remains incompletely understood. In this study, we reveal that ubiquitination at Lys360 facilitates BCAT1 degradation, with low ubiquitination levels contributing to high BCAT1 expression in glioma cells. The Carboxyl terminus of Hsc70-interacting protein (CHIP), an E3 ubiquitin ligase, interacts with BCAT1 via its coiled-coil (CC) domain, promoting its K48-linkage ubiquitin degradation through proteasomal pathway. Moreover, CHIP-mediated BCAT1 degradation induces metabolic reprogramming, and impedes glioma cell proliferation and tumor growth both in vitro and in vivo. Furthermore, a positive correlation is observed between low CHIP expression, elevated BCAT1 levels, and unfavorable prognosis among glioma patients. Additionally, we show that the CHIP/BCAT1 axis enhances glioma sensitivity to temozolomide by reducing glutathione (GSH) synthesis and increasing oxidative stress. These findings underscore the critical role of CHIP/BCAT1 axis in glioma cell proliferation and temozolomide sensitivity, highlighting its potential as a diagnostic marker and therapeutic target in glioma treatment.


Asunto(s)
Proliferación Celular , Glioma , Temozolomida , Transaminasas , Ubiquitina-Proteína Ligasas , Ubiquitinación , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proliferación Celular/efectos de los fármacos , Glioma/metabolismo , Glioma/patología , Glioma/genética , Glioma/tratamiento farmacológico , Animales , Línea Celular Tumoral , Transaminasas/metabolismo , Transaminasas/genética , Ratones , Ratones Desnudos , Ubiquitina/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Proteolisis/efectos de los fármacos , Masculino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Femenino
5.
Sci Rep ; 14(1): 15128, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956254

RESUMEN

Mohr-Coulomb (MC) strength criterion has been widely used in many classical analytical expressions and numerical modeling due to its simple physical calculation, but the MC criterion is not suitable for describing the failure envelope of rock masses. In order to directly apply MC parameters to analytical expressions or numerical modeling in rock slope stability analysis, scholars established a criterion for converting Hoek-Brown (HB) parameters to equivalent MC parameters. However, the consistency of HB parameters and equivalent MC parameters in calculating critical acceleration of slope needs to be further explored and confirmed. Therefore, HB parameters are converted into equivalent MC parameters by considering the influence of slope angle (1# case and 2# case when slope angle is not considered and slope angle is considered respectively). Then, the lower-bound of finite element limit analysis is used for numerical modeling, and the results of calculating critical acceleration using HB parameters and equivalent MC parameters are compared, and the influence of related parameters on the calculation of critical acceleration is studied. Finally, the influence of different critical accelerations on the calculation of slope permanent displacement is further analyzed through numerical cases and engineering examples. The results show that: (1) In the 1# case, the critical acceleration obtained by the equivalent MC parameters are significantly larger than that obtained by the 2 #case and the HB parameters, and this difference becomes more obvious with the increase of slope angle. The critical acceleration obtained by the 2# case is very close to the HB parameters; (2) In the 1# case, slope height is inversely proportional to ΔAc (HB(Ac) - 1#(Ac)), and with the increase of slope height, ΔAc decreases, while in the 2# case, the difference of ΔAc (HB(Ac) - 2#(Ac)) is not significant; (3) In the 1# case, the sensitivity of the HB parameters to ΔAc is D > GSI > mi > σci, but in the 2# case, there is no sensitivity-related regularity; (4) The application of HB parameters and equivalent MC parameters in slope permanent displacement is studied through numerical cases and engineering examples, and the limitations of equivalent MC parameters in rock slope stability evaluation are revealed.

6.
Nat Commun ; 15(1): 6473, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39085237

RESUMEN

The disposal and management of waste lithium-ion batteries (LIBs) and low-density polyethylene (LDPE) plastics pose significant environmental challenges. Here we show a synergistic pyrolysis approach that employs spent lithium transition metal oxides and waste LDPE plastics in one sealed reactor to achieve the separation of Li and transition metal. Additionally, we demonstrate the preparation of nanoscale NiCo alloy@carbon nanotubes (CNTs) through co-pyrolysis of LiNi0.6Co0.2Mn0.2O2 and LDPE. The NiCo alloy@CNTs exhibits excellent catalytic activity (Eonset = ~0.85 V) and the selectivity (~90%) for H2O2 production through the electrochemical reduction of oxygen. This can be attributed to the NiCo nanoalloy core and the presence of CNTs with abundant oxygen-containing functional groups (e.g., -COOH and C-O-C), as confirmed by density function theory calculations. Overall, this work presents a straightforward and green approach for valorizing and upcycling various waste LIBs and LDPE plastics.

7.
PhytoKeys ; 243: 199-207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38961997

RESUMEN

Cyrtomiumadenotrichum Y. Nong & R.H. Jiang (Dryopteridaceae), a new species from Guangxi, China, is described and illustrated. This new species is similar to C.nephrolepioides (Christ) Copel., C.obliquum Ching & K. H. Shing ex K. H. Shing, C.sinningense Ching & K. H. Shing ex K. H. Shing and C.calcis Liang Zhang, N.T.Lu & Li Bing Zhang in having erect rhizomes, dense, leathery lamina and rounded sori, but it can be easily distinguishable by its stipe sparsely glandular, base obvious oblique, basiscopic base truncate, acroscopic base auriculate or ovate.

8.
J Comput Chem ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012324

RESUMEN

The electronic structure of the strongly correlated electron system plutonium hexaboride is studied by using single-particle approximations and a many-body approach. Imaginary components of impurity Green's functions show that 5fj=5/2 and 5fj=7/2 manifolds are in conducting and insulating regimes, respectively. Quasi-particle weights and their ratio suggest that the intermediate coupling mechanism is applicable for Pu 5f electrons, and PuB6 might be in the orbital-selective localized state. The weighted summation of occupation probabilities yields the interconfiguration fluctuation and average occupation number of 5f electrons n5f ~ 5.101. The interplay of 5f-5f correlation, spin-orbit coupling, Hund's exchange interaction, many-body transition of 5f configurations, and final state effects might be responsible for the quasiparticle multiplets in electronic spectrum functions. Prominent characters in the density of state, such as the coexistence of atomic multiplet peaks in the vicinity of the Fermi level and broad Hubbard bands in the high-lying regime, suggest that PuB6 could be identified as a Racah material. Finally, the quasiparticle band structure is also presented.

9.
Cell Death Dis ; 15(6): 390, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830885

RESUMEN

Glioma is the most common and aggressive type of primary malignant brain tumor. The N6-methyladenosine (m6A) modification widely exists in eukaryotic cells and plays an important role in the occurrence and development of human tumors. However, the function and mechanism of heterogeneous nuclear ribonucleoprotein C (HNRNPC), an RNA-binding protein and m6A reader in gliomas remains to be comprehensively and extensively explored. Herein, we found that HNRNPC mRNA and protein overexpression were associated with a poor prognosis for patients with gliomas, based on the data from TCGA, the CGGA, and the TMAs. Biologically, HNRNPC knockdown markedly repressed malignant phenotypes of glioma in vitro and in vivo, whereas ectopic HNRNPC expression had the opposite effect. Integrative RNA sequencing and MeRIP sequencing analyses identified interleukin-1 receptor-associated kinase 1 (IRAK1) as a downstream target of HNRNPC. The glioma public datasets and tissue microarrays (TMAs) data indicated that IRAK1 overexpression was associated with poor prognosis, and IRAK1 knockdown significantly repressed malignant biological behavior in vitro. Mechanistically, HNRNPC maintains the mRNA stability of IRAK1 in an m6A-dependent manner, resulting in activation of the mitogen-activated protein kinase (MAPK) signaling pathway, which was necessary for the malignant behavior of glioma. Our findings demonstrate the HNRNPC-IRAK1-MAPK axis as a crucial carcinogenic factor for glioma and the novel underlying mechanism of IRAK1 upregulation, which provides a rationale for therapeutically targeting epitranscriptomic modulators in glioma.


Asunto(s)
Progresión de la Enfermedad , Glioma , Ribonucleoproteína Heterogénea-Nuclear Grupo C , Quinasas Asociadas a Receptores de Interleucina-1 , Sistema de Señalización de MAP Quinasas , ARN Mensajero , Humanos , Glioma/genética , Glioma/patología , Glioma/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas/genética , Ratones , Estabilidad del ARN/genética , Ratones Desnudos , Animales , Regulación Neoplásica de la Expresión Génica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Femenino , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Pronóstico
10.
Lipids Health Dis ; 23(1): 164, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831466

RESUMEN

OBJECTIVE: Although blood urea nitrogen (BUN) has a crucial impact on many diseases, its effect on outcomes in patients with hyperlipidemia remains unknown. The study aimed to investigate the relationships between BUN levels and all-cause and cardiovascular disease (CVD) mortality in individuals with hyperlipidemia. METHODS: This analysis comprised 28,122 subjects with hyperlipidemia from the National Health and Nutrition Examination Survey (NHANES) spanning 1999 to 2018. The risk of BUN on mortality was evaluated using weighted Cox regression models. Additionally, to illustrate the dose-response association, the restricted cubic spline (RCS) was used. RESULTS: During the observation period, 4276 participant deaths were recorded, of which 1206 were due to CVD. Compared to patients with hyperlipidemia in the third BUN quintile, the hazard ratios (HRs) for all-cause mortality were 1.26 (95% CIs: 1.09, 1.45) and 1.22 (95% CIs: 1.09, 1.37) for patients in the first and fifth quintiles of BUN, respectively. The HRs for CVD mortality among patients in the fifth quintile of BUN were 1.48 (95% CIs: 1.14, 1.93). BUN levels were found to have a U-shaped association with all-cause mortality and a linear association with CVD mortality using restricted triple spline analysis. CONCLUSIONS: This study revealed that both low and high BUN levels in patients with hyperlipidemia are associated with heightened all-cause mortality. Furthermore, elevated BUN levels are also associated with increased CVD mortality. The findings indicate that patients with hyperlipidemia may face an elevated risk of death if they have abnormal BUN levels.


Asunto(s)
Nitrógeno de la Urea Sanguínea , Enfermedades Cardiovasculares , Hiperlipidemias , Encuestas Nutricionales , Humanos , Hiperlipidemias/sangre , Hiperlipidemias/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/sangre , Modelos de Riesgos Proporcionales , Anciano , Adulto , Factores de Riesgo
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167220, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718847

RESUMEN

Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma.


Asunto(s)
Aminoácidos de Cadena Ramificada , Apoptosis , GTP Fosfohidrolasas , Glioblastoma , Estrés Oxidativo , Humanos , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Glioblastoma/metabolismo , Glioblastoma/patología , GTP Fosfohidrolasas/metabolismo , Animales , Aminoácidos de Cadena Ramificada/metabolismo , Línea Celular Tumoral , Ratones , Proteínas Mitocondriales/metabolismo , Ubiquitina/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Ubiquitinación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
12.
Exp Eye Res ; 244: 109919, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729254

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly, which is primarily attributed to oxidative stress-induced damage to the retinal pigment epithelium (RPE). Human amniotic mesenchymal stem cells (hAMSC) were considered to be one of the most promising stem cells for clinical application due to their low immunogenicity, tissue repair ability, pluripotent potential and potent paracrine effects. The conditional medium (hAMSC-CM) and exosomes (hAMSC-exo) derived from hAMSC, as mediators of intercellular communication, play an important role in the treatment of retinal diseases, but their effect and mechanism on oxidative stress-induced retinal degeneration are not explored. Here, we reported that hAMSC-CM alleviated H2O2-induced ARPE-19 cell death through inhibiting mitochondrial-mediated apoptosis pathway in vitro. The overproduction of reactive oxygen species (ROS), alteration in mitochondrial morphology, loss of mitochondrial membrane potential and elevation of Bax/Bcl2 ratio in ARPE-19 cells under oxidative stress were efficiently reversed by hAMSC-CM. Moreover, it was found that hAMSC-CM protected cells against oxidative injury via PI3K/Akt/FoxO3 signaling. Intriguingly, exosome inhibitor GW4869 alleviated the inhibitory effect of hAMSC-CM on H2O2-induced decrease in cell viability of ARPE-19 cells. We further demonstrated that hAMSC-exo exerted the similar protective effect on ARPE-19 cells against oxidative damage as hAMSC-CM. Additionally, both hAMSC-CM and hAMSC-exo ameliorated sodium iodate-induced deterioration of RPE and retinal damage in vivo. These results first indicate that hAMSC-CM and hAMSC-exo protect RPE cells from oxidative damage by regulating PI3K/Akt/FoxO3 pathway, suggesting hAMSC-CM and hAMSC-exo will be a promising cell-free therapy for the treatment of AMD in the future.


Asunto(s)
Amnios , Exosomas , Proteína Forkhead Box O3 , Células Madre Mesenquimatosas , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Degeneración Retiniana , Epitelio Pigmentado de la Retina , Transducción de Señal , Humanos , Células Madre Mesenquimatosas/metabolismo , Exosomas/metabolismo , Amnios/citología , Medios de Cultivo Condicionados/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/etiología , Proteína Forkhead Box O3/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Apoptosis , Células Cultivadas , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial , Western Blotting , Animales , Supervivencia Celular , Peróxido de Hidrógeno/toxicidad
13.
Biol Res ; 57(1): 34, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812057

RESUMEN

Studies have suggested that endoplasmic reticulum stress (ERS) is involved in neurological dysfunction and that electroacupuncture (EA) attenuates neuropathic pain (NP) via undefined pathways. However, the role of ERS in the anterior cingulate cortex (ACC) in NP and the effect of EA on ERS in the ACC have not yet been investigated. In this study, an NP model was established by chronic constriction injury (CCI) of the left sciatic nerve in rats, and mechanical and cold tests were used to evaluate behavioral hyperalgesia. The protein expression and distribution were evaluated using western blotting and immunofluorescence. The results showed that glucose-regulated protein 78 (BIP) and inositol-requiring enzyme 1α (IRE-1α) were co-localized in neurons in the ACC. After CCI, BIP, IRE-1α, and phosphorylation of IRE-1α were upregulated in the ACC. Intra-ACC administration of 4-PBA and Kira-6 attenuated pain hypersensitivity and downregulated phosphorylation of IRE-1α, while intraperitoneal injection of 4-PBA attenuated hyperalgesia and inhibited the activation of P38 and JNK in ACC. In contrast, ERS activation by intraperitoneal injection of tunicamycin induced behavioral hyperalgesia in naive rats. Furthermore, EA attenuated pain hypersensitivity and inhibited the CCI-induced overexpression of BIP and pIRE-1α. Taken together, these results demonstrate that EA attenuates NP by suppressing BIP- and IRE-1α-mediated ERS in the ACC. Our study presents novel evidence that ERS in the ACC is implicated in the development of NP and provides insights into the molecular mechanisms involved in the analgesic effect of EA.


Asunto(s)
Modelos Animales de Enfermedad , Electroacupuntura , Estrés del Retículo Endoplásmico , Giro del Cíngulo , Neuralgia , Ratas Sprague-Dawley , Animales , Electroacupuntura/métodos , Giro del Cíngulo/metabolismo , Neuralgia/terapia , Masculino , Estrés del Retículo Endoplásmico/fisiología , Ratas , Western Blotting , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Hiperalgesia/terapia , Chaperón BiP del Retículo Endoplásmico
14.
Front Pharmacol ; 15: 1270073, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725662

RESUMEN

The human eye is susceptible to various disorders that affect its structure or function, including glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). Mitochondrial dysfunction has been identified as a critical factor in the pathogenesis and progression of eye disorders, making it a potential therapeutic target in the clinic. Natural products have been used in traditional medicine for centuries and continue to play a significant role in modern drug development and clinical therapeutics. Recently, there has been a surge in research exploring the efficacy of natural products in treating eye disorders and their underlying physiological mechanisms. This review aims to discuss the involvement of mitochondrial dysfunction in eye disorders and summarize the recent advances in the application of natural products targeting mitochondria. In addition, we describe the future perspective and challenges in the development of mitochondria-targeting natural products.

15.
World Neurosurg ; 187: e340-e351, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663739

RESUMEN

BACKGROUND: There has been a growing interest in venous thromboembolism following spinal surgery over the past few years. However, there currently needs to be a bibliometric report on this field. This study aims to construct the knowledge structure of venous thromboembolism after spinal surgery and explores the current status of research productivity, research directions, hotspots, and trends. METHODS: All articles related to venous thromboembolism after spinal surgery from the Web of Science Core Collection database for 1990 to 2023 were retrieved. For bibliometric analysis, information extraction involves country/region, institutions, journals, authors, references, and keyword-related data. RESULTS: In this study, a total of 814 articles were identified. Studies related to venous thromboembolism after spinal surgery are showing an increasing trend, with the United States contributing the most. JOHNS HOPKINS UNIVERSITY is a high-productivity institution. The journal "SPINE" is highly productive. Research directions cover venous thromboembolism and bleeding, risk factors and prevention, complications, and perioperative blood protection strategies. Current research hotspots are risk factors, surgical location and approach, and perioperative blood protection strategies. Future research trends include establishing a predictive system for venous thromboembolism after spinal surgery to guide personalized prevention and treatment. CONCLUSIONS: This study constructed the knowledge structure of venous thromboembolism after spinal surgery, revealing current research hotspots and future trends. Future research trends include personalized prevention and treatment strategies for venous thromboembolism after spinal surgery, especially safe and effective chemical prophylaxis. It is hoped that this study can lay the foundation for subsequent research.


Asunto(s)
Bibliometría , Complicaciones Posoperatorias , Tromboembolia Venosa , Humanos , Investigación Biomédica/tendencias , Procedimientos Neuroquirúrgicos/efectos adversos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Factores de Riesgo , Columna Vertebral/cirugía , Tromboembolia Venosa/epidemiología , Tromboembolia Venosa/etiología
16.
Chest ; 165(4): e101-e106, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38599753

RESUMEN

CASE PRESENTATION: A 38-year-old previously healthy woman was referred to our sleep center for recurrent witnessed breathing arrest during sleep. She had been brought to the ED 3 months earlier because of sudden onset of dizziness with nausea and vomiting, numbness and weakness of the left limb, less clear speech, double vision, dysphagia, and choking cough while drinking water. Brain MRI showed an acute cerebral infarction in the left medulla oblongata (Fig 1). High-resolution MRI showed vertebral artery dissection (Fig 2). Antiplatelet aggregation, lipid reduction, plaque stabilization, and trophic nerve treatments were administered, and the left limb strength, speech, and swallowing function improved. She complained of poor sleep and difficulties with memory.


Asunto(s)
Isquemia Encefálica , Apnea Central del Sueño , Accidente Cerebrovascular , Femenino , Humanos , Adulto , Imagen por Resonancia Magnética , Infarto
17.
Int J Surg ; 110(4): 2065-2070, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38668659

RESUMEN

BACKGROUND: Patients with large acute ischemic strokes (AIS) often have a poor prognosis despite successful recanalization due to multiple factors including reperfusion injury. The authors aim to describe our preliminary experience of endovascular cooling in patients with a large AIS after recanalization. METHODS: From January 2021 to July 2022, AIS patients presenting with large infarcts (defined as ASPECTS ≤5 on noncontrast CT or ischemic core ≥50 ml on CT perfusion) who achieved successful recanalization after endovascular treatment were analyzed in a prospective registry. Patients were divided into targeted temperature management (TTM) and non-TTM group. Patients in the TTM group received systemic cooling with a targeted core temperature of 33° for at least 48 h. The primary outcome is 90-day favorable outcome [modified Rankin Scale (mRS) 0-2]. The secondary outcomes are 90-day good outcome (mRS 0-3), mortality, intracranial hemorrhage and malignant cerebral edema within 7 days or at discharge. RESULTS: Forty-four AIS patients were recruited (15 cases in the TTM group and 29 cases in the non-TTM group). The median Alberta Stroke Program Early CT Score (ASPECTS) was 3 (2-5). The median time for hypothermia duration was 84 (71.5-147.6) h. The TTM group had a numerically higher proportion of 90-day favorable outcomes than the non-TTM group (46.7 vs. 27.6%, P=0.210), and no significant difference were found regarding secondary outcomes (all P>0.05). The TTM group had a numerically higher rates of pneumonia (66.7 vs. 58.6%, P=0.604) and deep vein thrombosis (33.3 vs. 13.8%, P=0.138). Shivering occurred in 4/15 (26.7%) of the TTM patients and in none of the non-TTM patients (P=0.009). CONCLUSIONS: Postrecanalization cooling is feasible in patients with a large ischemic core. Future randomized clinical trials are warranted to validate its efficacy.


Asunto(s)
Hipotermia Inducida , Accidente Cerebrovascular Isquémico , Humanos , Masculino , Femenino , Accidente Cerebrovascular Isquémico/terapia , Anciano , Estudios Prospectivos , Hipotermia Inducida/métodos , Persona de Mediana Edad , Resultado del Tratamiento , Procedimientos Endovasculares/métodos , Anciano de 80 o más Años , Sistema de Registros , Isquemia Encefálica/terapia
18.
Sci Rep ; 14(1): 9172, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649396

RESUMEN

At present, the method for calculating long-term tunnel settlement predictions under metro loading considers only one working condition of passenger loading, which is inconsistent with actual working conditions. To establish a tunnel settlement model that accounts for variations in passenger flow, this study uses data mining methods to categorize metro operation into three working conditions: "peak period, secondary period, and low period." The impact of these passenger flow conditions on the dynamic response of the soil around the tunnel is analyzed. Then, based on the principles of calculus, a calculus-based prediction model is established to consider the changing patterns of metro passenger flow. The model is applied to analyze the long-term settlement characteristics of Shanghai Metro Line 10. The results indicate that, under identical conditions, soil displacement and dynamic deviatoric stress around the tunnel increase with passenger capacity. The calculus prediction model aligns more closely with actual working conditions than the conventional model. The predicted tunnel settlement of Shanghai Metro Line 10 after 20 years of operation is approximately 37.07 mm, with most settlement occurring in the early stages, primarily due to cumulative plastic deformation of the soil.

19.
Endokrynol Pol ; 75(1): 61-70, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38497391

RESUMEN

INTRODUCTION: Gestational diabetes mellitus (GDM) is the most common metabolic disease in pregnancy. However, studies of activating molecule of Beclin1-regulated autophagy (Ambra1) affecting the insulin substrate receptor 1/phosphatidylinositol 3 kinase/protein kinase B (IRS-1/PI3K/Akt) signalling pathway in GDM have not been reported. The aim of the study was to detect the difference of Ambra1 expression in the placenta of normal pregnant women and GDM patients. MATERIAL AND METHODS: An in vitro model of gestational diabetes mellitus was established by inducing HTR8/Svneo cells from human chorionic trophoblast layer with high glucose. The changes of cell morphology were observed by inverted microscope, and the expression levels of Ambra1 gene and protein in model cells were detected. After this, Ambra1 gene was silenced by shRNA transfection, and PI3K inhibitor was added to detect changes in Ambra1, autophagy, and insulin (INS) signalling pathways. RESULTS: The protein expression levels of Ambra1, Bcl-2 interacting protein (Beclin-1), and microtubule-associated proteins 1A/1B light chain 3B (LC3-II) in the placentas of GDM pregnant women were higher than those of normal pregnant women. High glucose induces morphological changes in HTR8/Svneo cells and increases Ambra1 transcription and translation levels. sh-Ambra1 increased survival of HTR8/SvNEO-HG cells and inhibited Ambra1, Beclin1, and LC3-II transcription and translation levels. Also, sh-Ambra1 increased IRS-1/PI3K/Akt protein phosphorylation levels and inhibited the IRS-1/PI3K/Akt signalling pathway and its resulting autophagy. CONCLUSIONS: sh-Ambra1 increased IRS-1/PI3K/Akt protein phosphorylation levels to reduce autophagy in gestational diabetes.


Asunto(s)
Diabetes Gestacional , Femenino , Humanos , Embarazo , Autofagia , Beclina-1 , Diabetes Gestacional/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
20.
Materials (Basel) ; 17(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38541585

RESUMEN

Bulk density and porosity have great influence on the technical performance of an emulsified asphalt mixture, so in order to enhance the strength of the asphalt mixture, bulk density should be improved and porosity should be reduced. Considering the forming process of the emulsified asphalt mixture, the decrease in porosity can ensure the state of the mixture. In order to reduce the porosity of the emulsified asphalt mixture, an innovative forming process is proposed to improve the performance of the emulsified asphalt mixture, and its strength formation mechanism is explored in this paper. Three groups of emulsified asphalt mixtures (ARC-8 + SBR, SMA-5 + EVA, SMA-5 + SBR) were prepared by a conventional mixing process and novel mixing process. Marshall test of the emulsified asphalt mixture, CT scanning test of the emulsified asphalt mixture, workability test and analysis were manufactured and tested. The results show that, compared with conventional methods, the innovative forming method can increase the bulk density of the mixture and reduce the porosity, and thus improve its technical performance. The reason is that most of the water in the mixture of the innovative forming method sticks to the outer surface of the fine aggregate, and the water is more easily discharged. Secondly, the fine aggregate of the innovative forming method is directly mixed with the emulsion, and the volume is smaller. The emulsion wraps the fine aggregate in it due to the surface tension, which enhances the adhesion effect, thus improving the strength of the mixture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA