Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Antibiotics (Basel) ; 13(4)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38667030

MRX-8 is a novel polymyxin for carbapenem-resistant Gram-negative infections that has been recently evaluated in Phase I clinical trials. Herein, its pharmacokinetics (PK) and nephrotoxicity in rats are reported for the first time. This study aimed at pre-clinical PK and safety assessments. An LC-MS/MS method was developed to determine concentrations of MRX-8 and its major deacylation metabolite, MRX-8039, in rat plasma. Animals were administered a single dose of MRX-8 (2, 4, 6, and 8 mg/kg) or comparator polymyxin B (PMB) (4 and 8 mg/kg) to compare the kidney injury known for the polymyxin drug class. Nephrotoxicity was evaluated using serum creatinine, blood urea nitrogen (BUN) biomarkers, and renal histopathology. In rats, MRX-8 displayed linear PK within the range of 2-8 mg/kg, with approximately 4% of MRX-8 converted to MRX-8039. MRX-8 induced only mild increases in serum creatinine and BUN levels, with an apparent decrease in nephrotoxicity within 24 h, in contrast to PMB, which exhibited a significant and more persistent toxicity. Additional nephrotoxicity biomarkers (plasma NGAL and urinary NGAL, KIM-1, and TIMP-1) have confirmed attenuated MRX-8 kidney injury. Histopathology has revealed significantly greater cellular/tissue toxicity for PMB as compared to MRX-8 (variances of p = 0.008 and p = 0.048 vs. saline control, respectively). Thus, MRX-8 induces a mild and reversible kidney injury in rats compared to PMB. These data support a continued evaluation of the novel polymyxin in human trials.

2.
Microbiol Spectr ; 11(6): e0243123, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37975686

IMPORTANCE: This study first reported the in vitro effector kinetics of the new non-fluorinated quinolone, nemonoxacin, against macrolide-resistant M. pneumoniae (MRMP) and macrolide susceptible M. pneumoniae (MSMP) strains along with other antimicrobial agents. The time-kill assays and pharmacodynamic analysis showed that nemonoxacin has significant mycoplasmacidal activity against MRMP and MSMP. This study paves the road to establish appropriate dosing protocols of a new antimicrobial drug for children infected with M. pneumoniae.


Pneumonia, Mycoplasma , Quinolones , Child , Humans , Mycoplasma pneumoniae , Pneumonia, Mycoplasma/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Quinolones/pharmacology , Macrolides/pharmacology , Drug Resistance, Bacterial , Microbial Sensitivity Tests
3.
Front Pharmacol ; 14: 1183332, 2023.
Article En | MEDLINE | ID: mdl-37324460

Objective: How to choose the appropriate antibiotics and dosage has always been a difficult issue during the treatment of multi-drug-resistant bacterial infections. Our study aims to resolve this difficulty by introducing our multi-disciplinary treatment (MDT) clinical decision-making scheme based on rigorous interpretation of antibiotic susceptibility tests and precise therapeutic drug monitoring (TDM)-guided dosage adjustment. Method: The treatment course of an elderly patient who developed a multi-drug-resistant Pseudomonas aeruginosa (MDRPA) bloodstream infection from a brain abscess was presented. Results: In the treatment process, ceftazidime-avibactam (CAZ-AVI) was used empirically for treating the infection and clinical symptoms improved. However, the follow-up bacterial susceptibility test showed that the bacteria were resistant to CAZ-AVI. Considering the low fault tolerance of clinical therapy, the treatment was switched to a 1 mg/kg maintenance dose of susceptible polymyxin B, and TDM showed that the AUC24h, ss of 65.5 mgh/L had been achieved. However, clinical symptoms were not improved after 6 days of treatment. Facing the complicated situation, the cooperation of physicians, clinical pharmacologists, and microbiologists was applied, and the treatment finally succeeded with the pathogen eradicated when polymyxin B dose was increased to 1.4 mg/kg, with the AUC24h, ss of 98.6 mgh/L. Conclusion: MDT collaboration on the premise of scientific and standardized drug management is helpful for the recovery process in patients. The empirical judgment of doctors, the medication recommendations from experts in the field of TDM and pharmacokinetics/pharmacodynamics, and the drug susceptibility results provided by the clinical microbiology laboratory all provide the direction of treatment.

4.
Adv Drug Deliv Rev ; 183: 114171, 2022 04.
Article En | MEDLINE | ID: mdl-35189264

Antimicrobial resistance is a major global health challenge. As few new efficacious antibiotics will become available in the near future, peptide antibiotics continue to be major therapeutic options for treating infections caused by multidrug-resistant pathogens. Rational use of antibiotics requires optimisation of the pharmacokinetics and pharmacodynamics for the treatment of different types of infections. Toxicodynamics must also be considered to improve the safety of antibiotic use and, where appropriate, to guide therapeutic drug monitoring. This review focuses on the pharmacokinetics/pharmacodynamics/toxicodynamics of peptide antibiotics against multidrug-resistant Gram-negative and Gram-positive pathogens. Optimising antibiotic exposure at the infection site is essential for improving their efficacy and minimising emergence of resistance.


Anti-Bacterial Agents , Drug Monitoring , Anti-Bacterial Agents/pharmacokinetics , Drug Resistance, Multiple, Bacterial , Humans , Peptides/pharmacology
5.
Molecules ; 27(3)2022 Feb 06.
Article En | MEDLINE | ID: mdl-35164349

Polymyxin-based combination therapy is commonly used to treat carbapenem-resistant Acinetobacter baumannii (CRAB) infections. In the present study, the bactericidal effect of polymyxin B and minocycline combination was tested in three CRAB strains containing blaOXA-23 by the checkerboard assay and in vitro dynamic pharmacokinetics/pharmacodynamics (PK/PD) model. The combination showed synergistic or partial synergistic effect (fractional inhibitory concentration index ≤0.56) on the tested strains in checkboard assays. The antibacterial activity was enhanced in the combination group compared with either monotherapy in in vitro PK/PD model. The combination regimen (simultaneous infusion of 0.75 mg/kg polymyxin B and 100 mg minocycline via 2 h infusion) reduced bacterial colony counts by 0.9-3.5 log10 colony forming units per milliliter (CFU/mL) compared with either drug alone at 24 h. In conclusion, 0.75 mg/kg polymyxin B combined with 100 mg minocycline via 2 h infusion could be a promising treatment option for CRAB bloodstream infections.


Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Drug Synergism , Minocycline/pharmacology , Polymyxin B/pharmacology , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/pharmacokinetics , Carbapenems/pharmacology , Drug Therapy, Combination , In Vitro Techniques , Minocycline/pharmacokinetics , Polymyxin B/pharmacokinetics , Tissue Distribution , beta-Lactamases/genetics
...