Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39202808

RESUMEN

Natural caffeic acid (CA) and its analogues have been studied for their potential applications in the treatment of various inflammatory and infectious skin diseases. However, the molecular mechanism underlying the effects of the CA remains largely unknown. Here, we report that CA and its two analogues, caffeic acid phenethyl ester (CAPE) and caffeic acid methyl caffeate (CAMC), inhibit TRPV3 currents in their concentration- and structure-dependent manners with IC50 values ranging from 102 to 410 µM. At the single-channel level, CA reduces the channel open probability and open frequency without alteration of unitary conductance. CA selectively inhibits TRPV3 relative to other subtypes of thermo-TRPs, such as TRPA1, TRPV1, TRPV4, and TRPM8. Molecular docking combined with site-specific mutagenesis reveals that a residue T636 in the Pore-loop is critical for CA binding to TRPV3. Further in vivo evaluation shows that CA significantly reverses TRPV3-mediated skin inflammation induced by skin sensitizer carvacrol. Altogether, our findings demonstrate that CA exerts its anti-inflammatory effects by selectively inhibiting TRPV3 through binding to the pocket formed by the Pore-loop and the S6. CA may serve as a lead for further modification and identification of specific TRPV3 channel inhibitors.


Asunto(s)
Ácidos Cafeicos , Simulación del Acoplamiento Molecular , Canales Catiónicos TRPV , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/química , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Humanos , Animales , Ratones , Piel/metabolismo , Piel/efectos de los fármacos , Piel/patología , Cimenos/farmacología , Cimenos/química , Células HEK293 , Antiinflamatorios/farmacología , Antiinflamatorios/química , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
2.
J Biol Chem ; 300(2): 105595, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154600

RESUMEN

The temperature-sensitive Ca2+-permeable TRPV3 ion channel is robustly expressed in the skin keratinocytes, and its gain-of-function mutations are involved in the pathology of skin lesions. Here, we report the identification of an antispasmodic agent flopropione that alleviates skin inflammation by selective inhibition of TRPV3. In whole-cell patch clamp recordings, flopropione selectively inhibits macroscopic TRPV3 currents in a concentration-dependent manner with an IC50 value of 17.8 ± 3.5 µM. At the single-channel level, flopropione inhibits TRPV3 channel open probability without alteration of its unitary conductance. In an in vivo mouse model of skin inflammation induced by the skin sensitizer DNFB, flopropione also alleviates dorsal skin lesions and ear skin swelling. Further molecular docking combined with site-directed mutagenesis reveals that two residues E501 and I505 in the channel S2-helix are critical for flopropione-mediated inhibition of TRPV3. Taken together, our findings demonstrate that the spasmolytic drug flopropione as a selective inhibitor of TRPV3 channel not only provides a valuable tool molecule for understanding of TRPV3 channel pharmacology but also holds repurposing potential for therapy of skin disorders, such as dermatitis and pruritus.


Asunto(s)
Dermatitis , Propiofenonas , Canales Catiónicos TRPV , Animales , Ratones , Dermatitis/tratamiento farmacológico , Queratinocitos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Parasimpatolíticos/farmacología , Parasimpatolíticos/uso terapéutico , Propiofenonas/farmacología , Propiofenonas/uso terapéutico , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Ratones Endogámicos C57BL , Masculino , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Piel/efectos de los fármacos
3.
FASEB J ; 37(12): e23309, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37983944

RESUMEN

Ultraviolet B (UVB) radiation causes skin injury by trigging excessive calcium influx and signaling cascades in the skin keratinocytes. The heat-sensitive Ca2+ -permeable transient receptor potential vanilloid 3 (TRPV3) channels robustly expressed in the keratinocytes play an important role in skin barrier formation and wound healing. Here, we report that inhibition of cutaneous TRPV3 alleviates UVB radiation-induced skin lesions. In mouse models of ear swelling and dorsal skin injury induced by a single exposure of weak UVB radiation, TRPV3 genes and proteins were upregulated in quantitative real-time PCR and Western blot assays. In accompany with TRPV3 upregulations, the expressions of proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were also increased. Knockout of the TRPV3 gene alleviates UVB-induced ear swelling and dorsal skin inflammation. Furthermore, topical applications of two selective TRPV3 inhibitors, osthole and verbascoside, resulted in a dose-dependent attenuation of skin inflammation and lesions. Taken together, our findings demonstrate the causative role of overactive TRPV3 channel function in the development of UVB-induced skin injury. Therefore, topical inhibition of TRPV3 may hold potential therapy or prevention of UVB radiation-induced skin injury.


Asunto(s)
Dermatitis , Canales de Potencial de Receptor Transitorio , Animales , Ratones , Calor , Canales de Potencial de Receptor Transitorio/metabolismo , Canales Catiónicos TRPV/metabolismo , Ratones Noqueados , Piel/metabolismo , Queratinocitos/metabolismo , Dermatitis/metabolismo , Inflamación/metabolismo
4.
J Biol Chem ; 298(2): 101555, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34973335

RESUMEN

2, 4-dinitrofluorobenzene (DNFB) and 2, 4-dinitrochlorobenzene (DNCB) are well known as skin sensitizers that can cause dermatitis. DNFB has shown to more potently sensitize skin; however, how DNFB and DNCB cause skin inflammation at a molecular level and why this difference in their sensitization ability is observed remain unknown. In this study, we aimed to identify the molecular targets and mechanisms on which DNFB and DNCB act. We used a fluorescent calcium imaging plate reader in an initial screening assay before patch-clamp recordings for validation. Molecular docking in combination with site-directed mutagenesis was then carried out to investigate DNFB and DNCB binding sites in the TRPA1 ion channel that may be selectively activated by these tow sensitizers. We found that DNFB and DNCB selectively activated TRPA1 channel with EC50 values of 2.3 ± 0.7 µM and 42.4 ± 20.9 µM, respectively. Single-channel recordings revealed that DNFB and DNCB increase the probability of channel opening and act on three residues (C621, E625, and Y658) critical for TRPA1 activation. Our findings may not only help explain the molecular mechanism underlying the dermatitis and pruritus caused by chemicals such as DNFB and DNCB, but also provide a molecular tool 7.5-fold more potent than the current TRPA1 activator allyl isothiocyanate (AITC) used for investigating TRPA1 channel pharmacology and pathology.


Asunto(s)
Dermatitis , Dinitroclorobenceno , Dinitrofluorobenceno , Piel , Canal Catiónico TRPA1 , Dermatitis/etiología , Dermatitis/metabolismo , Dinitroclorobenceno/química , Dinitroclorobenceno/farmacología , Dinitrofluorobenceno/química , Dinitrofluorobenceno/farmacología , Humanos , Simulación del Acoplamiento Molecular , Piel/efectos de los fármacos , Piel/metabolismo , Canal Catiónico TRPA1/química , Canal Catiónico TRPA1/metabolismo
5.
Bioorg Chem ; 114: 105115, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34175725

RESUMEN

Transient receptor potential vanilloid 3 (TRPV3) channel as a member of thermo TRPV subfamily is primarily expressed in the keratinocytes of the skin and sensory neurons, and plays critical roles in various physiological and pathological processes such as inflammation, pain sensation and skin disorders. However, TRPV3 studies have been challenging, in part due to a lack of research tools such as selective antagonists. Recently, we synthesized a series of cinnamate ester derivatives and evaluated their inhibitory activities on human TRPV3 channels expressed in HEK293 cells using whole-cell patch clamp recordings. And, we identified two potent TRPV3 antagonists 7c and 8c which IC50 values were 1.05 µM and 86 nM, respectively. It also showed good selectivity to other subfamily members of TRPV, such as TRPV1 and TRPV4.


Asunto(s)
Cinamatos/farmacología , Diseño de Fármacos , Ésteres/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Cinamatos/síntesis química , Cinamatos/química , Relación Dosis-Respuesta a Droga , Ésteres/síntesis química , Ésteres/química , Células HEK293 , Humanos , Estructura Molecular , Relación Estructura-Actividad
7.
Mol Pharmacol ; 96(3): 393-400, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31308264

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by cutaneous lesions and intense pruritus. The warm temperature-activated Ca2+-permeable transient receptor potential vanilloid (TRPV)3 channel is abundantly expressed in keratinocytes, and gain-of-function mutations of TRPV3 cause skin lesions and pruritus in rodents and humans, suggesting an involvement of TRPV3 in the pathogenesis of AD. Here we report that pharmacological and genetic inhibition of TRPV3 attenuates skin lesions and dermatitis in mice. We found that TRPV3 proteins, together with inflammatory factors tumor necrosis factor (TNF)-α and interleukin (IL)-6, were upregulated in the skin of mice in a AD-like model induced by topical application of chemical 2,4-dinitrofluorobenzene, as detected by Western blot analysis and immunostaining assays. Pharmacological activation of TRPV3 by channel agonist and skin sensitizer carvacrol resulted in the development of AD in wild-type mice but not in TRPV3 knockout mice. Furthermore, inhibition of TRPV3 by natural osthole reversed the severity of inflammatory dorsal skin and ear edema in a dose-dependent manner and also decreased expression of inflammatory factors TNF-α and IL-6. Taken together, our findings demonstrate the involvement of overactive TRPV3 in the progressive pathology of AD in mice, and topical inhibition of TRPV3 channel function may represent an effective option for preventing and treating AD or inflammatory skin diseases. SIGNIFICANCE STATEMENT: The overactive transient receptor potential vanilloid TRPV3 channel is critically involved in the pathogenesis of atopic dermatitis. Inhibition of TRPV3 channel function by topical natural osthole may represent an effective therapy for management of atopic dermatitis aimed at preventing or alleviating skin lesions and severe itching.


Asunto(s)
Cumarinas/administración & dosificación , Cimenos/efectos adversos , Dermatitis Atópica/metabolismo , Dinitrofluorobenceno/efectos adversos , Canales Catiónicos TRPV/metabolismo , Administración Tópica , Animales , Cumarinas/farmacología , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Calor , Humanos , Interleucina-6/metabolismo , Masculino , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA