Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 395: 130372, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278454

RESUMEN

A green approach of Desmodesmus sp. to Achromobacter pulmonis (1:1) coculture ratios was optimized to improve the removal efficiency of dibutyl phthalate (DBP) from simulated wastewater. High DBP resistance bacterial strains and microalgae was optimized from plastic contaminated water and acclimation process respectively. The influence of various factors on DBP removal performance was comprehensively investigated. Highest DBP removal 93 % was recorded, when the ratios algae-bacteria 1:1, with sodium acetate, pH-6, shaking speed-120 rpm and lighting periods L:D-12:12. Enough nutrient (TN/TP/TOC) availability and higher protein-108 mg/L and sugar-40 mg/L were observed in presences of 50 mg/L DBP. The degradation and sorption were calculated 81,12; 27,39 & 43,12 % in algae-bacteria, only algae and only bacteria system respectively. The degradation kinetics t1/2 3.74,22.15,12.86 days were evaluated, confirming that algae-bacteria effectively degrade the DBP. This outcome leading to promote a green sustainable approach to remove the emerging contamination from wastewater.


Asunto(s)
Achromobacter , Dibutil Ftalato , Dibutil Ftalato/metabolismo , Aguas Residuales , Achromobacter/metabolismo , Bacterias/metabolismo
2.
Sci Total Environ ; 871: 162002, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36740060

RESUMEN

The microalgae located near the estuary of the Liaohe River along the coast of Panjin have long been in an area with large fluctuations in salinity, temperature, and nutrients, and have high-quality alternatives for high-value metabolites. Three strains of microalgae were screened and the biomass of microalgae could be optimized 0.313-0.790 g L-1 in 10 L bioreactor. The determination results of bioactive substances in these three microalgae showed that, the amount of fucoxanthin in the growth phase II (14 days) was maximum, at 5.354, 6.284 and 14.837 mg g-1 respectively. The diatoxanthin of Dut-wj-J1 in growth phase III (21 days) could reach 5.158 mg g-1. Dut-wj-J4 had the highest lipid production efficiency (9.45 mg L-1 d-1) followed by Dut-wj-J2 (8.49 mg L-1 d-1) and Dut-wj-J1 (8.18 mg L-1 d-1) respectively. These bioactive substances have inhibition zones of 7-13 mm against all four strains of bacteria ie., Acetobacter, Rhodococcus erythropolis, Escherichia coli and Bacillus subtilis Cohn respectively. In addition, these microalgae can play a potential role in nutrient enrichment in eutrophic seawater. The NO3- degradation rates of these three algae in the first 14 days were 75.0 %, 45.8 % and 100 % respectively, as well as the PO4- degradation rates in the first 7 days were 94.8 %, 100 % and 80.9 % respectively. This work manifests the plasticity of algae isolated from the Bohai Sea and provides useful insights for further joint production of bioactive substances.


Asunto(s)
Diatomeas , Microalgas , Agua de Mar/química , Microalgas/metabolismo , Nutrientes , Biomasa , Antibacterianos/metabolismo , Nitrógeno/metabolismo
3.
Sci Total Environ ; 865: 161221, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36587692

RESUMEN

This paper presents the development of a dielectric spectroscopy-based method using a customized, transmission line probe, fabricated on a printed circuit board (PCB), for monitoring the effect of diethyl phthalate (DEP) microplastics on marine algae growth. Experiments were performed by exposing marine algae (Chlorella pyrenoidosa) to DEP (0-50 mg) for up to 6 days. In order to amplify the electrophysiological effects and improve the sensing, a glutaraldehyde crosslinking agent was used and encapsulated on the surface of the probe. The reflection coefficient (S11) and the complex permittivity (ɛ' & ɛ″) of the Medium Under Test (MUT) were investigated in the frequency range of 30 kHz-800 MHz. Without the presence of DEP, the number of algae (104 cells/mL) and chlorophyll content (mg/L) increased at the rates of 207.73 × 104 cells/mL and 148.1 mg/L per day, respectively. After 6 days of exposing Chlorella pyrenoidosa (C. pyrenoidosa) algae to different DEP concentrations, the growth rate decreased down to -11.92 × 104 cells/mL and -19.19 mg/L (50 mg DEP), respectively. Additionally, the linearity of the relationship kept decreasing as the DEP content increased from R2 = 0.9716 to R2 = 0.1050 and from R2 = 0.9293 to R2 = 0.4961, respectively. Dielectric spectroscopy using the custom, transmission line probe, at 740 MHz, showed linear relationship (-1.22 dB/day) between the reflection coefficient (S11) and hence complex permittivity (ɛ' & ɛ″) without the presence of DEP. However, as the DEP content increased, algae growth was prohibited more intensely, shown both from the number of algae and the chlorophyll content. This trend was reflected on S11 and subsequently on the complex permittivity. This relationship confirms the capability of this method to monitor the growth of marine algae in almost real-time. This dielectric spectroscopy method could be a potential, low-cost tool to examine the impact of microplastic pollutants on marine microorganisms.


Asunto(s)
Chlorella , Contaminantes Químicos del Agua , Microplásticos , Plásticos/toxicidad , Espectroscopía Dieléctrica , Clorofila , Contaminantes Químicos del Agua/análisis
4.
Chemosphere ; 313: 137315, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36410519

RESUMEN

Attapulgite co-modified by lanthanum-iron (MT-LHMT) was used to study its effectiveness and mechanism in controlling phosphorus release from sediments. MT-LHMT has high adsorption capacity for phosphate and the maximum adsorption capacity of MT-LHMT to phosphate can reach 75.79 mg/g. The mechanism mainly involved electrostatic action, surface precipitation and ligand exchange between MT-LHMT bonded hydroxyl and phosphate to form La-O-P and Fe-O-P inner-sphere complexes. MT-LHMT has excellent adsorption performance in the pH range of 3-8. In addition to HCO3-, CO32- and HA- had a negative effect on the phosphorus removal of MT-LHMT, while NO3-, Cl-, SO42-, K+, Ca2+ and Mg2+ had a positive or no effect on phosphorus removal. MT-LHMT significantly reduced the risk of phosphorus release from overlying water in different dose effects and covering methods, as well as the unstable inactivation of flowing phosphorus, sediment dissolved reactive phosphorus (DRP) and available phosphorus with medium diffusion gradient in thin film in the sediment-water interface (Labile-PDGT). The MT-LHMT capping wrapped with fabric can reduce the risk of nitrogen release from sediment to overlying water more than only MT-LHMT capping. The results of this study showed that the MT-LHMT capping wrapped with fabric has high potential and can be used as an active capping material to manage the nitrogen and phosphorus load in surface water.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Fósforo/química , Hierro/química , Lantano/química , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Fosfatos , Nitrógeno , Lagos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA