Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
BMC Musculoskelet Disord ; 25(1): 317, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654244

BACKGROUND: The effects on bone mineral density (BMD)/fracture between type 1 (T1D) and type 2 (T2D) diabetes are unknown. Therefore, we aimed to investigate the causal relationship between the two types of diabetes and BMD/fracture using a Mendelian randomization (MR) design. METHODS: A two-sample MR study was conducted to examine the causal relationship between diabetes and BMD/fracture, with three phenotypes (T1D, T2D, and glycosylated hemoglobin [HbA1c]) of diabetes as exposures and five phenotypes (femoral neck BMD [FN-BMD], lumbar spine BMD [LS-BMD], heel-BMD, total body BMD [TB-BMD], and fracture) as outcomes, combining MR-Egger, weighted median, simple mode, and inverse variance weighted (IVW) sensitivity assessments. Additionally, horizontal pleiotropy was evaluated and corrected using the residual sum and outlier approaches. RESULTS: The IVW method showed that genetically predicted T1D was negatively associated with TB-BMD (ß = -0.018, 95% CI: -0.030, -0.006), while T2D was positively associated with FN-BMD (ß = 0.033, 95% CI: 0.003, 0.062), heel-BMD (ß = 0.018, 95% CI: 0.006, 0.031), and TB-BMD (ß = 0.050, 95% CI: 0.022, 0.079). Further, HbA1c was not associated with the five outcomes (ß ranged from - 0.012 to 0.075). CONCLUSIONS: Our results showed that T1D and T2D have different effects on BMD at the genetic level. BMD decreased in patients with T1D and increased in those with T2D. These findings highlight the complex interplay between diabetes and bone health, suggesting potential age-specific effects and genetic influences. To better understand the mechanisms of bone metabolism in patients with diabetes, further longitudinal studies are required to explain BMD changes in different types of diabetes.


Bone Density , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Mendelian Randomization Analysis , Osteoporosis , Humans , Bone Density/genetics , Osteoporosis/genetics , Osteoporosis/epidemiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis , Lumbar Vertebrae/diagnostic imaging , Femur Neck/diagnostic imaging , Phenotype
2.
Int Immunopharmacol ; 128: 111453, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38241841

BACKGROUND: Tumor necrosis factor-α (TNF-α) is involved in inflammatory responses and promotes cell death and the inhibition of osteogenic differentiation. MicroRNA (miRNA) plays a crucial role in the infected bone diseases, however, the biological role of miRNAs in inflammation-induced impaired osteogenic differentiation remains unclear. This study aimed to explore the role of miRNA-18a-5p (miR-18a) in regulating PANoptosis and osteogenic differentiation in an inflammatory environment via hypoxia-inducible factor-1α (HIF1-α). METHODS: The expression of miR-18a in MC3T3-E1 cells was analyzed using quantitative reverse transcription-polymerase chain reaction in an inflammatory environment induced by TNF-α. The expression of HIF1-α and NLRP3 in LV-miR-18a or sh-miR-18a cells was analyzed using western blotting. Fluorescence imaging for cell death, flow cytometry, and alkaline phosphatase activity analysis were used to analyze the role of miR-18a in TNF-α-induced PANoptosis and the inhibition of osteogenic differentiation. An animal model of infectious bone defect was established to validate the regulatory role of miR-18a in an inflammatory environment. RESULTS: The expression of miRNA-18a in the MC3T3-E1 cell line was significantly lower under TNF-α stimulation than in the normal environment. miR-18a significantly inhibited the expression of HIF1-α and NLRP3, and inhibition of HIF1-α expression further inhibited NLRP3 expression. Furthermore, inhibition of miR-18a expression promoted the TNF-α-induced PANoptosis and inhibition of osteogenic differentiation, whereas miR-18a overexpression and the inhibition of both HIF1-α and NLRP3 reduced the effects of TNF-α. These findings are consistent with those of the animal experiments. CONCLUSION: miRNA-18a negatively affects HIF1-α/NLRP3 expression, inhibits inflammation-induced PANoptosis, and impairs osteogenic differentiation. Thus, it is a potential therapeutic candidate for developing anti-inflammatory strategies for infected bone diseases.


Bone Diseases , MicroRNAs , Animals , Apoptosis , Bone Diseases/metabolism , Cell Differentiation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/metabolism , MicroRNAs/genetics , Necroptosis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Osteoblasts/metabolism , Osteogenesis , Pyroptosis , Tumor Necrosis Factor-alpha/metabolism , Mice
3.
BMC Med Genomics ; 17(1): 38, 2024 Jan 29.
Article En | MEDLINE | ID: mdl-38287380

BACKGROUND: Single nucleotide polymorphisms (SNPs) in the nucleotide-binding domain leucine-rich repeat protein-3 (NLRP3) gene are reported to be linked to many inflammatory disorders. However, uncertainty persists over the associations between these SNPs and susceptibilities to chronic osteomyelitis (COM). This study aimed to investigate potential relationships between NLRP3 gene SNPs and the risks of developing COM in a Chinese Han cohort. METHODS: The four tag SNPs of the NLRP3 gene were genotyped in a total of 428 COM patients and 368 healthy controlsusing the SNapShot technique. The genotype distribution, mutant allele frequency, and the four genetic models (dominant, recessive, homozygous, and heterozygous) of the four SNPs were compared between the two groups. RESULTS: A significant association was found between rs10754558 polymorphism and the probability of COM occurence by the heterozygous model (P = 0.037, odds ratio [OR] = 1.541, 95% confidence interval [CI] = 1.025-2.319), indicating that rs10754558 may be associated with a higher risk of developing COM.In addition, possible relationship was found between rs7525979 polymorphism and the risk of COM development by the outcomes of homozygous (P = 0.073, OR = 0.453, 95% CI = 0.187-1.097) and recessive (P = 0.093, OR = 0.478, 95% CI = 0.198-1.151) models, though no statistical differences were obtained. CONCLUSIONS: Outcomes of the present study showed, for the first time, that rs10754558 polymorphism of the NLRP3 gene may increase the risk of COM development in this Chinese Han population, with genotype CG as a risk factor. Nonetheless, this conclusion requires verification from further studies with a larger sample size.


NLR Family, Pyrin Domain-Containing 3 Protein , Osteomyelitis , Humans , Case-Control Studies , China , Gene Frequency , Genetic Predisposition to Disease , Genotype , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Osteomyelitis/genetics , Polymorphism, Single Nucleotide
...