Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
New Phytol ; 238(4): 1351-1361, 2023 05.
Article En | MEDLINE | ID: mdl-36727281

Heritable fungal endosymbiosis is underinvestigated in plant biology and documented in only three plant families (Convolvulaceae, Fabaceae, and Poaceae). An estimated 40% of morning glory species in the tribe Ipomoeeae (Convolvulaceae) have associations with one of two distinct heritable, endosymbiotic fungi (Periglandula and Chaetothyriales) that produce the bioactive metabolites ergot alkaloids, indole diterpene alkaloids, and swainsonine, which have been of interest for their toxic effects on animals and potential medical applications. Here, we report the occurrence of ergot alkaloids, indole diterpene alkaloids, and swainsonine in the Convolvulaceae; and the fungi that produce them based on synthesis of previous studies and new indole diterpene alkaloid data from 27 additional species in a phylogenetic, geographic, and life-history context. We find that individual morning glory species host no more than one metabolite-producing fungal endosymbiont (with one possible exception), possibly due to costs to the host and overlapping functions of the alkaloids. The symbiotic morning glory lineages occur in distinct phylogenetic clades, and host species have significantly larger seed size than nonsymbiotic species. The distinct and widely distributed endosymbiotic relationships in the morning glory family and their alkaloids provide an accessible study system for understanding heritable plant-fungal symbiosis evolution and their potential functions for host plants.


Alkaloids , Convolvulaceae , Ergot Alkaloids , Ipomoea , Animals , Convolvulaceae/metabolism , Convolvulaceae/microbiology , Swainsonine/metabolism , Phylogeny , Ipomoea/genetics , Ipomoea/metabolism , Ipomoea/microbiology , Ergot Alkaloids/metabolism , Alkaloids/metabolism , Diterpene Alkaloids
2.
Front Microbiol ; 13: 871148, 2022.
Article En | MEDLINE | ID: mdl-35591984

Endosymbionts play important roles in the life cycles of many macro-organisms. The indolizidine alkaloid swainsonine is produced by heritable fungi that occurs in diverse plant families, such as locoweeds (Fabaceae) and morning glories (Convolvulaceae) plus two species of Malvaceae. Swainsonine is known for its toxic effects on livestock following the ingestion of locoweeds and the potential for pharmaceutical applications. We sampled and tested herbarium seed samples (n = 983) from 244 morning glory species for the presence of swainsonine and built a phylogeny based on available internal transcribed spacer (ITS) sequences of the sampled species. We show that swainsonine occurs only in a single morning glory clade and host species are established on multiple continents. Our results further indicate that this symbiosis developed ∼5 mya and that swainsonine-positive species have larger seeds than their uninfected conspecifics.

3.
Mol Ecol ; 31(4): 1142-1159, 2022 02.
Article En | MEDLINE | ID: mdl-34839548

The rapid invasion of the non-native Phragmites australis (Poaceae, subfamily Arundinoideae) is a major threat to native wetland ecosystems in North America and elsewhere. We describe the first reference genome for P. australis and compare invasive (ssp. australis) and native (ssp. americanus) genotypes collected from replicated populations across the Laurentian Great Lakes to deduce genomic bases driving its invasive success. Here, we report novel genomic features including a Phragmites lineage-specific whole genome duplication, followed by gene loss and preferential retention of genes associated with transcription factors and regulatory functions in the remaining duplicates. Comparative transcriptomic analyses revealed that genes associated with biotic stress and defence responses were expressed at a higher basal level in invasive genotypes, but native genotypes showed a stronger induction of defence responses when challenged by a fungal endophyte. The reference genome and transcriptomes, combined with previous ecological and environmental data, add to our understanding of mechanisms leading to invasiveness and support the development of novel, genomics-assisted management approaches for invasive Phragmites.


Ecosystem , Poaceae , Genotype , Microsatellite Repeats , Poaceae/genetics , Wetlands
4.
Commun Biol ; 4(1): 1362, 2021 12 06.
Article En | MEDLINE | ID: mdl-34873267

Heritable microorganisms play critical roles in life cycles of many macro-organisms but their prevalence and functional roles are unknown for most plants. Bioactive ergot alkaloids produced by heritable Periglandula fungi occur in some morning glories (Convolvulaceae), similar to ergot alkaloids in grasses infected with related fungi. Ergot alkaloids have been of longstanding interest given their toxic effects, psychoactive properties, and medical applications. Here we show that ergot alkaloids are concentrated in four morning glory clades exhibiting differences in alkaloid profiles and are more prevalent in species with larger seeds than those with smaller seeds. Further, we found a phylogenetically-independent, positive correlation between seed mass and alkaloid concentrations in symbiotic species. Our findings suggest that heritable symbiosis has diversified among particular clades by vertical transmission through seeds combined with host speciation, and that ergot alkaloids are particularly beneficial to species with larger seeds. Our results are consistent with the defensive symbiosis hypothesis where bioactive ergot alkaloids from Periglandula symbionts protect seeds and seedlings from natural enemies, and provide a framework for exploring microbial chemistry in other plant-microbe interactions.


Convolvulaceae/microbiology , Ergot Alkaloids/analysis , Hypocreales/physiology , Symbiosis , Hypocreales/chemistry , Seedlings/microbiology , Seeds/microbiology
...