Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108747

RESUMEN

The 9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme for the process of ABA synthesis that plays key roles in a variety of biological processes. In the current investigation, genome-wide identification and comprehensive analysis of the NCED gene family in 'Kuerle Xiangli' (Pyrus sinkiangensis Yu) were conducted using the pear genomic sequence. In total, nineteen members of PbNCED genes were identified from the whole genome of pear, which are not evenly distributed over the scaffolds, and most of which were focussed in the chloroplasts. Sequence analysis of promoters showed many cis-regulatory elements, which presumably responded to phytohormones such as abscisic acid, auxin, etc. Synteny block indicated that the PbNCED genes have experienced strong purifying selection. Multiple sequence alignment demonstrated that these members are highly similar and conserved. In addition, we found that PbNCED genes were differentially expressed in various tissues, and three PbNCED genes (PbNCED1, PbNCED2, and PbNCED13) were differentially expressed in response to exogenous Gibberellin (GA3) and Paclobutrazol (PP333). PbNCED1 and PbNCED13 positively promote ABA synthesis in sepals after GA3 and PP333 treatment, whereas PbNCED2 positively regulated ABA synthesis in ovaries after GA3 treatment, and PbNCED13 positively regulated ABA synthesis in the ovaries after PP333 treatment. This study was the first genome-wide report of the pear NCED gene family, which could improve our understanding of pear NCED proteins and provide a solid foundation for future cloning and functional analyses of this gene family. Meanwhile, our results also give a better understanding of the important genes and regulation pathways related to calyx abscission in 'Kuerle Xiangli'.


Asunto(s)
Dioxigenasas , Pyrus , Giberelinas/farmacología , Pyrus/genética , Pyrus/metabolismo , Dioxigenasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
2.
Sheng Wu Gong Cheng Xue Bao ; 39(2): 640-652, 2023 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-36847095

RESUMEN

GI (GIGANTEA) is one of the output key genes for circadian clock in the plant. The JrGI gene was cloned and its expression in different tissues was analyzed to facilitate the functional research of JrGI. RT-PCR (reverse transcription-polymerase chain reaction) was used to clone JrGI gene in present study. This gene was then analyzed by bioinformatics, subcellular localization and gene expression. The coding sequence (CDS) full length of JrGI gene was 3 516 bp, encoding 1 171 amino acids with a molecular mass of 128.60 kDa and a theoretical isoelectric point of 6.13. It was a hydrophilic protein. Phylogenetic analysis showed that JrGI of 'Xinxin 2' was highly homologous to GI of Populus euphratica. The result of subcellular localization showed that JrGI protein was located in nucleus. The JrGI, JrCO and JrFT genes in female flower buds undifferentiated and early differentiated of 'Xinxin 2' were analyzed by RT-qPCR (real-time quantitative PCR). The results showed that the expression of JrGI, JrCO and JrFT genes were the highest on morphological differentiation, implying the temporal and special regulation of JrGI in the differential process of female flower buds of'Xinxin 2'. In addition, RT-qPCR analysis showed that JrGI gene was expressed in all tissues examined, whereas the expression level in leaves was the highest. It is suggested that JrGI gene plays a key role in the development of walnut leaves.


Asunto(s)
Juglans , Juglans/genética , Filogenia , Hojas de la Planta , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Biol Macromol ; 223(Pt A): 202-212, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36347378

RESUMEN

Phosphatidyl ethanolamine-binding protein (PEBP) has a conserved PEBP domain and plays an important role in regulating the flowering time and growth of angiosperms. To understand the evolution of PEBP family genes in walnut family and the mechanism of regulating flowering in photoperiod pathway, 53 genes with PEBP domain were identified from 5 Juglandaceae plants. The PEBP gene family of Juglandaceae can be divided into four subgroups, FT-like, TFL-like, MFT-like and PEBP-like subgroups. These genes all show very high homology for motifs and gene structure in Juglandaceae. In addition, the results of gene replication and collinearity analysis showed that the evolution of PEBP genes was mainly purified and selected, and segmental repetition was the main driving force for the evolution of PEBP gene family in walnut family. We found that PEBP gene family played an important role in female flower bud differentiation, and most JrPEBP genes were highly expressed in leaf bud and female flower bud by qRT-PCR. In Arabidopsis, AtCO can not only directly bind to CORE2, but also interact with NF-Y complex to positively regulate the expression of AtFT gene. In this study, we proved that JrCO (the lineal homologue of AtCO) could not directly regulate the expression of JrFT gene, but could enhance the binding of JrNF-YB4/6 protein to the promoter of JrFT gene by forming a heteropolymer with NF-YB4/NF-YB6. We also confirmed that JrNF-YC1/3/7, JrNF-YB4/6 and JrCO can form a trimer structure similar to AtNF-YB-YC-CO of Arabidopsis, and then bind to the promoter of JrFT gene to promote the transcription of JrFT gene. In a word, through identification and analysis of PEBP gene family in Juglandaceae and study on the mechanism of photoperiod pathway regulating flowering in walnut, we have found that nuclear transcription factor NF-YB/YC plays a more important role in the trimer structure of NF-YB-YC-CO in walnut species. Our study has further perfected the flowering regulatory network of walnut species.


Asunto(s)
Arabidopsis , Juglandaceae , Juglans , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Flores/genética , Proteínas de Plantas/química , Filogenia , Juglans/genética
4.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36293519

RESUMEN

The GRF gene family plays an important role in plant growth and development as regulators involved in plant hormone signaling and metabolism. However, the Juglandaceae GRF gene family remains to be studied. Here, we identified 15, 15, 19, and 20 GRF genes in J. regia, C. illinoinensis, J. sigillata, and J. mandshurica, respectively. The phylogeny shows that the Juglandaceae family GRF is divided into two subfamilies, the ε-group and the non-ε-group, and that selection pressure analysis did not detect amino acid loci subject to positive selection pressure. In addition, we found that the duplications of the Juglandaceae family GRF genes were all segmental duplication events, and a total of 79 orthologous gene pairs and one paralogous homologous gene pair were identified in four Juglandaceae families. The Ka/KS ratios between these homologous gene pairs were further analyzed, and the Ka/KS values were all less than 1, indicating that purifying selection plays an important role in the evolution of the Juglandaceae family GRF genes. The codon bias of genes in the GRF family of Juglandaceae species is weak, and is affected by both natural selection pressure and base mutation, and translation selection plays a dominant role in the mutation pressure in codon usage. Finally, expression analysis showed that GRF genes play important roles in pecan embryo development and walnut male and female flower bud development, but with different expression patterns. In conclusion, this study will serve as a rich genetic resource for exploring the molecular mechanisms of flower bud differentiation and embryo development in Juglandaceae. In addition, this is the first study to report the GRF gene family in the Juglandaceae family; therefore, our study will provide guidance for future comparative and functional genomic studies of the GRF gene family in the Juglandaceae specie.


Asunto(s)
Juglandaceae , Juglandaceae/genética , Evolución Molecular , Reguladores del Crecimiento de las Plantas , Genoma de Planta , Filogenia , Familia de Multigenes , Aminoácidos/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
5.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682645

RESUMEN

Basic leucine zipper (bZIP), a conserved transcription factor widely found in eukaryotes, has important regulatory roles in plant growth. To understand the information related to the bZIP gene family in walnut, 88 JrbZIP genes were identified at the genome-wide level and classified into 13 subfamilies (A, B, C, D, E, F, G, H, I, J, K, M, and S) using a bioinformatic approach. The number of exons in JrbZIPs ranged from 1 to 12, the number of amino acids in JrbZIP proteins ranged from 145 to 783, and the isoelectric point ranged from 4.85 to 10.05. The majority of JrbZIP genes were localized in the nucleus. The promoter prediction results indicated that the walnut bZIP gene contains a large number of light-responsive and jasmonate-responsive action elements. The 88 JrbZIP genes were involved in DNA binding and nucleus and RNA biosynthetic processes of three ontological categories, molecular functions, cellular components and biological processes. The codon preference analysis showed that the bZIP gene family has a stronger bias for AGA, AGG, UUG, GCU, GUU, and UCU than other codons. Moreover, the transcriptomic data showed that JrbZIP genes might play an important role in floral bud differentiation. The results of a protein interaction network map and kegg enrichment analysis indicated that bZIP genes were mainly involved in phytohormone signaling, anthocyanin synthesis and flowering regulation. qRT-PCR demonstrated the role of the bZIP gene family in floral bud differentiation. Co-expression network maps were constructed for 29 walnut bZIP genes and 6 flowering genes, and JrCO (a homolog of AtCO) was significantly correlated (p < 0.05) with 13 JrbZIP genes in the level of floral bud differentiation expression, including JrbZIP31 (homolog of AtFD), and JrLFY was significantly and positively correlated with JrbZIP10,11,51,59,67 (p < 0.05), and the above results suggest that bZIP family genes may act together with flowering genes to regulate flower bud differentiation in walnut. This study was the first genome-wide report of the walnut bZIP gene family, which could improve our understanding of walnut bZIP proteins and provide a solid foundation for future cloning and functional analyses of this gene family.


Asunto(s)
Juglans , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Juglans/genética , Juglans/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Front Plant Sci ; 13: 849048, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310671

RESUMEN

APETALA2/ethylene responsive factors (AP2/ERF) are unique regulators in the plant kingdom and are involved in the whole life activity processes such as development, ripening, and biotic and abiotic stresses. In tomato (Solanum lycopersicum), there are 140 AP2/ERF genes; however, their functionality remains poorly understood. In this work, the 14th and 19th amino acid differences in the AP2 domain were used to distinguish DREB and ERF subfamily members. Even when the AP2 domain of 68 ERF proteins from 20 plant species and motifs in tomato DREB and ERF proteins were compared, the binding ability of DREB and ERF proteins with DRE/CRT and/or GCC boxes remained unknown. During fruit development and ripening, the expressions of 13 DREB and 19 ERF subfamily genes showed some regular changes, and the promoters of most genes had ARF, DRE/CRT, and/or GCC boxes. This suggests that these genes directly or indirectly respond to IAA and/or ethylene (ET) signals during fruit development and ripening. Moreover, some of these may feedback regulate IAA or ET biosynthesis. In addition, 16 EAR motif-containing ERF genes in tomato were expressed in many organs and their total transcripts per million (TPM) values exceeded those of other ERF genes in most organs. To determine whether the EAR motif in EAR motif-containing ERF proteins has repression function, their EAR motifs were retained or deleted in a yeast one-hybrid (YIH) assay. The results indicate that most of EAR motif-containing ERF proteins lost repression activity after deleting the EAR motif. Moreover, some of these were expressed during ripening. Thus, these EAR motif-containing ERF proteins play vital roles in balancing the regulatory functions of other ERF proteins by completing the DRE/CRT and/or GCC box sites of target genes to ensure normal growth and development in tomato.

7.
J Agric Food Chem ; 69(32): 9472-9483, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34347458

RESUMEN

To explore the metabolic basis of carotenoid accumulation in different developmental periods of apricot fruits, targeted metabonomic and transcriptomic analyses were conducted in four developmental periods (S1-S4) in two cultivars (Prunus armeniaca cv. "Kuchebaixing" with white flesh and P. armeniaca cv. "Shushangganxing" with orange flesh) with different carotenoid contents. 14 types of carotenes and 27 types of carotene lipids were identified in apricot flesh in different developmental periods. In S3 and S4, the carotenoid contents of the two cultivars were significantly different, and ß-carotene and (E/Z)-phytoene were the key metabolites that caused the difference in the total carotenoid content between the examined cultivars. Twenty-five structural genes (including genes in the methylerythritol 4-phosphate and carotenoid biosynthesis pathways) related to carotenoid biosynthesis were identified among the differentially expressed genes in different developmental periods of the two cultivars, and a carotenoid metabolic pathway map of apricot fruits was drawn according to the KEGG pathway map. The combined analysis of carotenoid metabolism data and transcriptome data showed that PSY, NCED1, and CCD4 were the key genes leading to the great differences in the total carotenoid content. The results provide a new approach to study the synthesis and accumulation of carotenoids in apricot fruits.


Asunto(s)
Prunus armeniaca , Carotenoides , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Fenotipo , Transcriptoma
8.
Sci Rep ; 9(1): 11643, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406208

RESUMEN

Fifty-two GRAS genes are identified in walnut genome. Based on the evolutionary relationship and motif analysis, the walnut GRAS gene family was divided into eight subfamilies, and the sequence features analysis of JrGRAS proteins showed that the JrGRAS protein sequences were both conserved and altered during the evolutionary process. Gene duplication analysis indicated that seven GRAS genes in walnut have orthologous genes in other species, and five of them occurred duplicated events in walnut genome. Expression pattern analysis of the GRAS family genes in walnut showed that two JrGRAS genes (JrCIGRa-b and JrSCL28a) were differentially expressed between flower bud and leaf bud (p < 0.01), and two JrGRAS genes (JrCIGRa-b and JrSCL13b-d) were differentially expressed between the different development stages of flower buds transition (p < 0.01), besides, three hub genes (JrGAIa, JrSCL3f and JrSHRc) were identified by co-expression analysis, which suggested these GRAS genes may play an important role in regulating the development of apical meristem in walnut. This study laid a foundation for further understanding of the function of GRAS family genes in walnut.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Juglans/genética , Familia de Multigenes/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Duplicación de Gen , Perfilación de la Expresión Génica , Genoma de Planta , Juglans/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Filogenia , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
9.
BMC Plant Biol ; 19(1): 192, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31072362

RESUMEN

BACKGROUND: The objective of this study was to characterize molecular mechanism of calyx persistence in Korla fragrant pear by transcriptome and small RNA sequencing. Abscission zone tissues of flowers at three stages (the first, fifth and ninth days of the late bloom stage), with 50 mg/L GA3 (calyx persistence treatment, C_1, C_5, C_9) or 500 mg/L PP333 (calyx abscission treatment, T_1, T_5, T_9), were collected and simultaneously conducted transcriptome and small RNA sequencing. RESULTS: Through association analysis of transcriptome and small RNA sequencing, mRNA-miRNA network was conducted. Compared calyx persistence groups with calyx abscission groups during the same stage, 145, 56 and 150 mRNA-miRNA pairs were obtained in C_1 vs T_1, C_5 vs T_5 and C_9 vs T_9, respectively; When C_1 compared with C_5 and C_9, 90 and 506 mRNA-miRNA pairs were screened respectively, and 255 mRNA-miRNA pairs were obtained from the comparison between C_5 and C_9; When T_1 compared with the T_5 and T_9, respectively, 206 and 796 mRNA-miRNA pairs were obtained, and 383 mRNA-miRNA pairs were obtained from the comparison between T_5 and T_9. These mRNAs in miRNA-mRNA pairs were significantly enriched into the terpenoid backbone biosynthesis, photosynthesis - antenna proteins, porphyrin and chlorophyll metabolism, carotenoid biosynthesis, zeatin biosynthesis and plant hormone signal transduction. In addition, we obtained some key genes from miRNA-mRNA pairs that may be associated with calyx abscission, including protein phosphatase 2C (psi-miR394a-HAB1), receptor-like protein kinase (psi-miR396a-5p-HERK1), cellulose synthase-like protein D3 (psi-miR827-CSLD3), beta-galactosidase (psi-miR858b-ß-galactosidase), SPL-psi-miR156j/157d, abscisic acid 8'-hydroxylase 1 (psi-miR396a-5p-CYP707A1) and auxin response factor (psi-miR160a-3p-ARF6, psi-miR167d-ARF18, psi-miR167a-5p-ARF25), etc. CONCLUSION: By integrated analysis mRNA and miRNA, our study gives a better understanding of the important genes and regulation pathway related to calyx abscission in Korla fragrant pear. We have also established the network of miRNA-mRNA pairs to learn about precise regulation of miRNA on calyx abscission.


Asunto(s)
Flores/genética , MicroARNs/genética , Pyrus/genética , Análisis de Secuencia de ARN , Secuencia Conservada/genética , Ontología de Genes , Genes de Plantas , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Transcriptoma/genética
10.
Sci Rep ; 9(1): 7092, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068628

RESUMEN

Using paraffin sections, the stages of walnut female flower bud differentiation were divided into the predifferentiation period (F_1), initial differentiation period (F_2) and flower primordium differentiation period (F_3). Leaf buds collected at the same stage as F_2 were designated JRL. Transcriptomic profiling was performed, and a total of 132,154 unigenes were obtained with lengths ranging from 201 bp to 16,831 bp. The analysis of differentially expressed genes (DEGs) showed that there were 597, 784 and 532 DEGs in the three combinations F_1vsF_2, F_1vsF_3, and F_2vsF_3, respectively. The comparison F_2vsJRL showed that 374 DEGs were differentially expressed between female buds and leaf buds. Thirty-one DEGs related to flowering time were further used to construct coexpression networks, and CRY2 and NF-YA were identified as core DEGs in flowering time regulation. Eighteen DEGs related to flowering time were subjected to real-time quantitative analysis. Our work provides a foundation for further research on the walnut floral transition and provides new resources for future research on walnut biology and biotechnology.


Asunto(s)
Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Juglans/crecimiento & desarrollo , Juglans/genética , Transcriptoma , Redes Reguladoras de Genes , Genes de Plantas , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA-Seq/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
PLoS One ; 13(12): e0209424, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30562379

RESUMEN

Reverse transcription quantitative real-time PCR (RT-qPCR) is a popular adopted technique to detect gene expression, and the selection of appropriate reference genes is crucial for data normalization. In the present study, seven candidate reference genes were screened to evaluate their expression stability in various flower buds, leaf buds, tissues and cultivars of the English walnut (Juglans regia L.) based on four algorithms (geNorm, Normfinder, Bestkeeper and RefFinder). The results demonstrated that TUA, EF1 and TUB were appropriate reference genes for flower buds at different stages of female flower buds differentiation; TUB and 18S rRNA were best for leaf buds at different stages of female flower buds differentiation; TUB and TUA were suitable for different cultivars; and ACT2, 18S rRNA and GAPDH were useful for different tissues. Moreover, the expression of ACT was not stable among different flower buds, leaf buds and cultivars. The stability of reference genes were confirmed through the analysis of the expression of SPL18 gene. These results will contribute to a reliable normalization of gene expression in J. regia.


Asunto(s)
Perfilación de la Expresión Génica/normas , Genes de Plantas/genética , Juglans/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , Perfilación de la Expresión Génica/métodos , Estándares de Referencia
12.
BMC Plant Biol ; 18(1): 255, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30352551

RESUMEN

BACKGROUND: The eukaryotic transcription factor NF-Y (which consists of NF-YA, NF-YB and NF-YC subunits) is involved in many important plant development processes. There are many reports about the NF-Y family in Arabidopsis and other plant species. However, there are no reports about the NF-Y family in walnut (Juglans regia L.). RESULTS: Thirty-three walnut NF-Y genes (JrNF-Ys) were identified and mapped on the walnut genome. The JrNF-Y gene family consisted of 17 NF-YA genes, 9 NF-YB genes, and 7 NF-YC genes. The structural features of the JrNF-Y genes were investigated by comparing their evolutionary relationship and motif distributions. The comparisons indicated the NF-Y gene structure was both conserved and altered during evolution. Functional prediction and protein interaction analysis were performed by comparing the JrNF-Y protein structure with that in Arabidopsis. Two differentially expressed JrNF-Y genes were identified. Their expression was compared with that of three JrCOs and two JrFTs using quantitative real-time PCR (qPCR). The results revealed that the expression of JrCO2 was positively correlated with the expression of JrNF-YA11 and JrNF-YA12. In contrast, JrNF-CO1 and JrNF-YA12 were negatively correlated. CONCLUSIONS: Thirty-three JrNF-Ys were identified and their evolutionary, structure, biological function and expression pattern were analyzed. Two of the JrNF-Ys were screened out, their expression was differentially expressed in different development periods of female flower buds, and in different tissues (female flower buds and leaf buds). Based on prediction and experimental data, JrNF-Ys may be involved in flowering regulation by co-regulate the expression of flowering genes with other transcription factors (TFs). The results of this study may make contribution to the further investigation of JrNF-Y family.


Asunto(s)
Factor de Unión a CCAAT/genética , Juglans/genética , Proteínas de Plantas/genética , Factor de Unión a CCAAT/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Filogenia , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas
13.
Molecules ; 23(5)2018 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-29772800

RESUMEN

Flower induction is an essential stage in walnut (Juglans regia L.) trees, directly affecting yield, yield stability, fruit quality and commodity value. The objective of this study was to identify miRNAs related to female flower induction via high-throughput sequencing and bioinformatics analysis. A total of 123 miRNAs were identified including 51 known miRNAs and 72 novel miRNAs. Differential expression was observed in 19 of the known miRNAs and 34 of the novel miRNAs. Twelve miRNAs were confirmed by RT-qPCR. A total of 1339 target genes were predicted for the differentially expressed miRNAs. The functions of 616 of those target genes had been previously annotated. The target genes of the differentially expressed miRNAs included: (i) floral homeotic protein APETALA 2 (AP2) and ethylene-responsive transcription factor RAP2-7 which were targeted by jre-miRn69; (ii) squamosa promoter-binding protein 1 (SPB1) and various SPLs (squamosa promoter-binding-like protein) which were targeted by jre-miR157a-5p; (iii) various hormone response factors which were targeted by jre-miR160a-5p (ARF18) and jre-miR167a-5p (ARF8) and (iv) transcription factor SCL6 which was targeted by jre-miR171b-3p, jre-miRn46 and jre-miRn49. The KEGG pathway analysis of the target genes indicated that the differentially expressed miRNAs were mainly enriched to ubiquitin mediated proteolysis, RNA degradation and various carbohydrate metabolism pathways. Many miRNAs were detected in J. regia during female flower induction. Some miRNAs (jre-miR157a-5p, jre-miR160a-5p, jre-miR167a-5p, miR171b-3p jre-miRn69 and jre-miRn49) were involved in female flower induction. The results of this experiment will contribute valuable information for further research about the function of miRNAs in flower induction of J. regia and other fruit trees.


Asunto(s)
Flores/genética , Regulación de la Expresión Génica de las Plantas , Juglans/genética , MicroARNs/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Genes de Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Juglans/crecimiento & desarrollo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
14.
BMC Genomics ; 17: 132, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26911295

RESUMEN

BACKGROUND: The objective of this study was to increase understanding about genetic mechanisms affecting calyx persistence in Korla fragrant pear (Pyrus brestschneideri Rehd). Flowers were collected at early bloom, full bloom, and late bloom. The RNA was extracted from the flowers and then combined according to calyx type. Transcriptome and digital gene expression (DGE) profiles of flowers, ovaries, and sepals with persistent calyx (SC_hua, SC_ep, and SC_zf, respectively) were compared with those of flowers, ovaries, and sepals with deciduous calyx (TL_hua, TL_ep, and TL_zf, respectively). Temporal changes in the expression of selected genes in floral organs with either persistent or deciduous calyx were compared using real-time quantitative PCR (qRT-PCR). RESULTS: Comparison of the transcriptome sequences for SC_hua and TL_hua indicated 26 differentially expressed genes (DEGs) with known relationship to abscission and 10 DEGs with unknown function. We identified 98 MYB and 21 SPL genes from the assembled unigenes. From SC_zf vs TL_zf, we identified 21 DEGs with known relationship to abscission and 18 DEGs with unknown function. From SC_ep vs TL_ep, 12 DEGs with known relationship to abscission were identified along with 11 DEGs with unknown function. Ten DEGs were identified by both transcriptome sequencing and DGE sequencing. CONCLUSIONS: More than 50 DEGs were observed that were related to calyx persistence in Korla fragrant pear. Some of the genes were related to cell wall degradation, plant hormone signal transduction, and stress response. Other DEGs were identified as zinc finger protein genes and lipid transfer protein genes. Further analysis showed that calyx persistence in Korla fragment pear was a metabolic process regulated by many genes related to cell wall degradation and plant hormones.


Asunto(s)
Flores/genética , Pyrus/genética , Transcriptoma , Flores/crecimiento & desarrollo , Genes de Plantas , Anotación de Secuencia Molecular , Pyrus/crecimiento & desarrollo , ARN de Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA