Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Microbiol ; 22(1): 79, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331139

RESUMEN

BACKGROUND: Archaea form a third domain of life that is distinct from Bacteria and Eukarya. So far, many scholars have elucidated considerable details about the typical promoter architectures of the three domains of life. However, a functional promoter from the archaeon Halobacterium salinarum has never been studied in Escherichia coli. RESULTS: This paper found that the promoter of Halobacterium salinarum showed a promoter function in Escherichia coli. This Escherichia coli promoter structure contains - 10 box, -10 box extension and - 29 elements, however, no -35 box. The - 29 element is exercised by the TATA box in archaea. And we isolated the RM10 fragment that possessed the fusion characteristics of bacteria and archaea, which was overlapped with functionality of TATA box and - 29 elements. CONCLUSIONS: The - 29 element reflects the evolutionary relationship between the archaeal promoter and the bacterial promoter. The result possibly indicated that there may be a certain internal connection between archaea and bacteria. We hypothesized that it provided a new viewpoint of the evolutionary relationship of archaea and other organisms.


Asunto(s)
Proteínas Arqueales , Halobacterium salinarum , Archaea/metabolismo , Proteínas Arqueales/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Halobacterium salinarum/genética , Halobacterium salinarum/metabolismo , Regiones Promotoras Genéticas
2.
Elife ; 82019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30648969

RESUMEN

Heterochromatin Protein 1 (HP1) is a conserved chromosomal protein in eukaryotic cells that has a major role in directing heterochromatin formation, a process that requires co-transcriptional gene silencing mediated by small RNAs and their associated argonaute proteins. Heterochromatin formation requires erasing the active epigenetic mark, such as H3K4me2, but the molecular link between HP1 and H3K4 demethylation remains unclear. In a fertility screen in female Drosophila, we identified ovaries absent (ova), which functions in the stem cell niche, downstream of Piwi, to support germline stem cell differentiation. Moreover, ova acts as a suppressor of position effect variegation, and is required for silencing telomeric transposons in the germline. Biochemically, Ova acts to link the H3K4 demethylase dLsd1 to HP1a for local histone modifications. Therefore, our study provides a molecular connection between HP1a and local H3K4 demethylation during HP1a-mediated gene silencing that is required for ovary development, transposon silencing, and heterochromatin formation. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Silenciador del Gen , Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Factores Generales de Transcripción/metabolismo , Animales , Homólogo de la Proteína Chromobox 5 , Desmetilación , Femenino , Células Germinativas/citología , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Unión Proteica , Células Madre/citología , Células Madre/metabolismo
3.
J Cell Sci ; 126(Pt 17): 3884-92, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23843608

RESUMEN

Tubular sclerosis complex gene products TSC1 and TSC2 have evolutionarily conserved roles in cell growth from Drosophila to mammals. Here we reveal important roles for TSC1/2 in regulating intestinal stem cell (ISC) maintenance and differentiation of the enteroendocrine cell lineage in the Drosophila midgut. Loss of either the Tsc1 or Tsc2 gene in ISCs causes rapid ISC loss through TORC1 hyperactivation, because ISCs can be efficiently rescued by mutation of S6k or by rapamycin treatment. In addition, overexpression of Rheb, which triggers TORC1 activation, recapitulates the phenotype caused by TSC1/2 disruption. Genetic studies suggest that TSC1/2 maintains ISCs independently of nutritional status or Notch regulation, probably by inhibiting cell delamination. We show that Tsc1/Tsc2 mutant ISCs can efficiently produce enterocytes but not enteroendocrine cells, and this altered differentiation potential is also caused by hyperactivation of TORC1. Reduced TORC1-S6K signaling by mutation of S6k, however, has no effect on ISC maintenance or cell lineage differentiation. Our studies demonstrate that hyperactivation of TORC1 following the loss of TSC1/2 is detrimental to stem cell maintenance and multiple lineage differentiation in the Drosophila ISC lineage, a mechanism that could be conserved in other stem cell lineages, including that in humans.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Dieta , Drosophila melanogaster , Enterocitos/metabolismo , Células Enteroendocrinas/metabolismo , Intestinos/citología , Proteínas de Unión al GTP Monoméricas/metabolismo , Neuropéptidos/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro , Receptores Notch/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Transducción de Señal/genética , Sirolimus/farmacología
4.
Dev Biol ; 378(2): 122-40, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23570874

RESUMEN

Adenomatous polyposis coli (APC) and K-ras are the two most frequently mutated genes found in human colorectal cancers. In human colorectal cancers, Wnt signaling activation after the loss of APC is hypothesized to be the key event for adenoma initiation, whereas additional mutations such as Ras activation are required for the progression from adenoma to carcinoma. However, accumulating data have led to conflicting views regarding the precise role of Ras in APC loss-induced tumorigenesis. Here, using Drosophila midgut as a model system, we show that in the absence of Ras, APC mutant epithelial cells cannot initiate hyperplasia, suggesting that Ras plays an essential role in tumor initiation. Conversely, activating Ras by expressing oncogenic Ras or Raf in APC-deficient cells led to a blockage of cell differentiation and to preinvasive tumor outgrowth, characteristics that are shared by advanced colorectal carcinoma in humans. Mechanistically, we find that Ras is not required for Wnt signaling activation after APC loss, although Ras hyperactivation is able to potentiate Wnt signaling by increasing the cytoplasmic and nuclear accumulation of Armadillo/ß-catenin via mechanisms independent of JNK/Rac1 or PI3K-Akt signaling, partly owing to the downregulation of DE-cadherin. Together with the data from gene expression analyses, our results indicate that both parallel and cooperative mechanisms of Wnt and Ras signaling are responsible for the initiation and progression of intestinal tumorigenesis after APC loss.


Asunto(s)
Transformación Celular Neoplásica/genética , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/genética , Mucosa Intestinal/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Núcleo Celular/metabolismo , Transformación Celular Neoplásica/metabolismo , Citoplasma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Neoplasias Intestinales/genética , Neoplasias Intestinales/metabolismo , Intestinos/patología , Microscopía Confocal , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
5.
Dev Dyn ; 241(3): 455-64, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22241697

RESUMEN

BACKGROUND: The p55 family WD40 repeat-containing histone chaperone proteins are components of several chromatin regulatory complexes (such as PRC2, NURF and CAF-1) and interact with histone H4, yet their functional relevance in vivo is unclear. RESULTS: Here we use Drosophila as a genetic model to dissect the function of p55/Caf1 during development. In agree with a recent report, we find that p55 is essential for Drosophila development and is required for cell proliferation and viability. However, our data further demonstrate that histone H3K27 di-/tri-methylation and PRC2-mediated gene silencing still occur normally when p55 is missing. p55 is also implicated in bridging chromatin regulatory complexes to the chromatin by binding to histone H4, but we find that a transgene of p55 whose binding pocket is disrupted could still functionally substitute the wild-type p55 for the survival. CONCLUSIONS: Our studies suggest that p55 is not crucial for PRC2-mediated gene silencing in vivo, and the vital function of p55 is probably not dependent on its interaction with histone H4.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Histonas/metabolismo , Proteína 4 de Unión a Retinoblastoma/metabolismo , Alelos , Animales , Proliferación Celular , Supervivencia Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína 4 de Unión a Retinoblastoma/genética
6.
Development ; 137(15): 2461-9, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20573703

RESUMEN

Tuberous sclerosis complex human disease gene products TSC1 and TSC2 form a functional complex that negatively regulates target of rapamycin (TOR), an evolutionarily conserved kinase that plays a central role in cell growth and metabolism. Here, we describe a novel role of TSC1/2 in controlling stem cell maintenance. We show that in the Drosophila ovary, disruption of either the Tsc1 or Tsc2 gene in germline stem cells (GSCs) leads to precocious GSC differentiation and loss. The GSC loss can be rescued by treatment with TORC1 inhibitor rapamycin, or by eliminating S6K, a TORC1 downstream effecter, suggesting that precocious differentiation of Tsc1/2 mutant GSC is due to hyperactivation of TORC1. One well-studied mechanism for GSC maintenance is that BMP signals from the niche directly repress the expression of a differentiation-promoting gene bag of marbles (bam) in GSCs. In Tsc1/2 mutant GSCs, BMP signalling activity is downregulated, but bam expression is still repressed. Moreover, Tsc1 bam double mutant GSCs could differentiate into early cystocytes, suggesting that TSC1/2 controls GSC differentiation via both BMP-Bam-dependent and -independent pathways. Taken together, these results suggest that TSC prevents precocious GSC differentiation by inhibiting TORC1 activity and subsequently differentiation-promoting programs. As TSC1/2-TORC1 signalling is highly conserved from Drosophila to mammals, it could have a similar role in controlling stem cell behaviour in mammals, including humans.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Células Germinativas/citología , Células Madre/citología , Animales , Apoptosis , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Cruzamientos Genéticos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microscopía Fluorescente/métodos , Modelos Biológicos , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...