Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Open Biol ; 7(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29142106

RESUMEN

Mammalian prions cause lethal neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) and consist of multi-chain assemblies of misfolded cellular prion protein (PrPC). Ligands that bind to PrPC can inhibit prion propagation and neurotoxicity. Extensive prior work established that certain soluble assemblies of the Alzheimer's disease (AD)-associated amyloid ß-protein (Aß) can tightly bind to PrPC, and that this interaction may be relevant to their toxicity in AD. Here, we investigated whether such soluble Aß assemblies might, conversely, have an inhibitory effect on prion propagation. Using cellular models of prion infection and propagation and distinct Aß preparations, we found that the form of Aß assemblies which most avidly bound to PrP in vitro also inhibited prion infection and propagation. By contrast, forms of Aß which exhibit little or no binding to PrP were unable to attenuate prion propagation. These data suggest that soluble aggregates of Aß can compete with prions for binding to PrPC and emphasize the bidirectional nature of the interplay between Aß and PrPC in Alzheimer's and prion diseases. Such inhibitory effects of Aß on prion propagation may contribute to the apparent fall-off in the incidence of sporadic CJD at advanced age where cerebral Aß deposition is common.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Línea Celular , Ratones , Proteínas PrPSc/toxicidad , Unión Proteica
2.
Proc Natl Acad Sci U S A ; 107(41): 17610-5, 2010 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20876144

RESUMEN

In prion diseases, the misfolded protein aggregates are derived from cellular prion protein (PrP(C)). Numerous ligands have been reported to bind to human PrP(C) (huPrP), but none to the structured region with the affinity required for a pharmacological chaperone. Using equilibrium dialysis, we screened molecules previously suggested to interact with PrP to discriminate between those which did not interact with PrP, behaved as nonspecific polyionic aggregates or formed a genuine interaction. Those that bind could potentially act as pharmacological chaperones. Here we report that a cationic tetrapyrrole [Fe(III)-TMPyP], which displays potent antiprion activity, binds to the structured region of huPrP. Using a battery of biophysical techniques, we demonstrate that Fe(III)-TMPyP forms a 11 complex via the structured C terminus of huPrP with a K(d) of 4.5 ± 2 µM, which is in the range of its IC(50) for curing prion-infected cells of 1.6 ± 0.4 µM and the concentration required to inhibit protein-misfolding cyclic amplification. Therefore, this molecule tests the hypothesis that stabilization of huPrP(C), as a principle, could be used in the treatment of human prion disease. The identification of a binding site with a defined 3D structure opens up the possibility of designing small molecules that stabilize huPrP and prevent its conversion into the disease-associated form.


Asunto(s)
Descubrimiento de Drogas/métodos , Modelos Moleculares , Enfermedades por Prión/tratamiento farmacológico , Priones/metabolismo , Unión Proteica , Tetrapirroles/metabolismo , Sitios de Unión/genética , Biofisica/métodos , Dicroismo Circular , Humanos , Espectroscopía de Resonancia Magnética , Priones/química , Pliegue de Proteína , Ultracentrifugación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA