Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(12): 5568-5579, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38470041

RESUMEN

Two-dimensional (2D) hybrid organic-inorganic perovskites constitute a versatile class of materials applied to a variety of optoelectronic devices. These materials are composed of alternating layers of inorganic lead halide octahedra and organic ammonium cations. Most perovskite research studies so far have focused on organic sublattices based on phenethylammonium and alkylammonium cations, which are packed by van der Waals cohesive forces. Here, we report a more complex organic sublattice containing benzotriazole-based ammonium cations packed through interdigitated π-π stacking and hydrogen bonding. Single crystals and thin films of four perovskite derivatives are studied in depth with optical spectroscopy and X-ray diffraction, supported by density-functional theory calculations. We quantify the lattice stabilization of interdigitation, dipole-dipole interactions, and inter- as well as intramolecular hydrogen bonding. Furthermore, we investigate the driving force behind interdigitation by defining a steric occupancy factor σ and tuning the composition of the organic and inorganic sublattice. We relate the phenomenon of interdigitation to the available lattice space and to weakened hydrogen bonding to the inorganic octahedra. Finally, we find that the stabilizing interactions in the organic sublattice slightly improve the thermal stability of the perovskite. This work sheds light on the design rules and structure-property relationships of 2D layered hybrid perovskites.

2.
Nat Commun ; 15(1): 288, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177094

RESUMEN

The charge-transport properties of conjugated polymers have been studied extensively for opto-electronic device applications. Some polymer semiconductors not only support the ambipolar transport of electrons and holes, but do so with comparable carrier mobilities. This opens the possibility of gaining deeper insight into the charge-transport physics of these complex materials via comparison between electron and hole dynamics while keeping other factors, such as polymer microstructure, equal. Here, we use field-induced electron spin resonance spectroscopy to compare the spin relaxation behavior of electron and hole polarons in three ambipolar conjugated polymers. Our experiments show unique relaxation regimes as a function of temperature for electrons and holes, whereby at lower temperatures electrons relax slower than holes, but at higher temperatures, in the so-called spin-shuttling regime, the trend is reversed. On the basis of theoretical simulations, we attribute this to differences in the delocalization of electron and hole wavefunctions and show that spin relaxation in the spin shuttling regimes provides a sensitive probe of the intimate coupling between charge and structural dynamics.

3.
J Chem Theory Comput ; 19(24): 9403-9415, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38048307

RESUMEN

We report on the implementation of a versatile projection-operator diabatization approach to calculate electronic coupling integrals in layered periodic systems. The approach is applied to model charge transport across the saturated organic spacers in two-dimensional (2D) lead halide perovskites. The calculations yield out-of-plane charge transfer rates that decay exponentially with the increasing length of the alkyl chain, range from a few nanoseconds to milliseconds, and are supportive of a hopping mechanism. Most importantly, we show that the charge carriers strongly couple to distortions of the Pb-I framework and that accounting for the associated nonlocal dynamic disorder increases the thermally averaged interlayer rates by a few orders of magnitude compared to the frozen-ion 0 K-optimized structure. Our formalism provides the first comprehensive insight into the role of the organic spacer cation on vertical transport in 2D lead halide perovskites and can be readily extended to functional π-conjugated spacers, where we expect the improved energy alignment with the inorganic layout to speed up the charge transfer between the semiconducting layers.

4.
ACS Energy Lett ; 7(10): 3302-3310, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36277131

RESUMEN

The mixed ionic-electronic nature of lead halide perovskites makes their performance in solar cells complex in nature. Ion migration is often associated with negative impacts-such as hysteresis or device degradation-leading to significant efforts to suppress ionic movement in perovskite solar cells. In this work, we demonstrate that ion trapping at the perovskite/electron transport layer interface induces band bending, thus increasing the built-in potential and open-circuit voltage of the device. Quantum chemical calculations reveal that iodine interstitials are stabilized at that interface, effectively trapping them at a remarkably high density of ∼1021 cm-3 which causes the band bending. Despite the presence of this high density of ionic defects, the electronic structure calculations show no sub-band-gap states (electronic traps) are formed due to a pronounced perovskite lattice reorganization. Our work demonstrates that ionic traps can have a positive impact on device performance of perovskite solar cells.

5.
JACS Au ; 2(1): 136-149, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35098230

RESUMEN

Lead-free perovskites are attracting increasing interest as nontoxic materials for advanced optoelectronic applications. Here, we report on a family of silver/bismuth bromide double perovskites with lower dimensionality obtained by incorporating phenethylammonium (PEA) as an organic spacer, leading to the realization of two-dimensional double perovskites in the form of (PEA)4AgBiBr8 (n = 1) and the first reported (PEA)2CsAgBiBr7 (n = 2). In contrast to the situation prevailing in lead halide perovskites, we find a rather weak influence of electronic and dielectric confinement on the photophysics of the lead-free double perovskites, with both the 3D Cs2AgBiBr6 and the 2D n = 1 and n = 2 materials being dominated by strong excitonic effects. The large measured Stokes shift is explained by the inherent soft character of the double-perovskite lattices, rather than by the often-invoked band to band indirect recombination. We discuss the implications of these results for the use of double perovskites in light-emitting applications.

6.
Mater Horiz ; 8(5): 1547-1560, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34846463

RESUMEN

Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with the lowest energy optical absorption in the blue region. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid time-dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfer from the conduction band of the inorganic component to the LUMO of the spacer as a potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructures. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application.

7.
J Phys Chem Lett ; 12(10): 2528-2535, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33683137

RESUMEN

Low-dimensional metal halide perovskites are being intensively investigated because of their higher stability and chemical versatility in comparison to their 3D counterparts. Unfortunately, this comes at the expense of the electronic and charge transport properties, limited by the reduced perovskite dimensionality. Cation engineering can be envisaged as a solution to tune and possibly further improve the material's optoelectronic properties. In this work, we screen and design new electronically active A-site cations that can promote charge transport across the inorganic layers. We show that hybridization of the valence band electronic states of the perovskite inorganic sublattice and the highest occupied molecular orbitals of the A-site organic cations can be tuned to exhibit a variety of optoelectronic properties. A significant interplay of A-cation size, electronic structure, and steric constraints is revealed, suggesting intriguing means of further tuning the 2D perovskite electronic structure toward achieving stable and efficient solar cell devices.

8.
J Chem Phys ; 153(8): 084103, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872885

RESUMEN

Exciton-polaritons in organic materials are hybrid states that result from the strong interaction of photons and the bound excitons that these materials host. Organic polaritons hold great interest for optoelectronic applications; however, progress toward this end has been impeded by the lack of a first principles approach that quantifies light-matter interactions in these systems, which would allow the formulation of molecular design rules. Here, we present a theoretical framework that combines first principles calculations for excitons with classical electrodynamics in order to quantify light-matter interactions. We exemplify our approach by studying variants of the conjugated polymer polydiacetylene, and we show that a large polymer conjugation length is critical toward strong exciton-photon coupling, hence underlying the importance of pure structures without static disorder. By comparing to our experimental reflectivity measurements, we show that the coupling of excitons to vibrations, manifested by phonon side bands in the absorption, has a strong impact on the magnitude of light-matter coupling over a range of frequencies. Our approach opens the way toward a deeper understanding of polaritons in organic materials, and we highlight that a quantitatively accurate calculation of the exciton-photon interaction would require accounting for all sources of disorder self-consistently.

9.
Adv Funct Mater ; 30(28): 2000228, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32684906

RESUMEN

2D hybrid perovskites (2DP) are versatile materials, whose electronic and optical properties can be tuned through the nature of the organic cations (even when those are seemingly electronically inert). Here, it is demonstrated that fluorination of the organic ligands yields glassy 2DP materials featuring long-lived correlated electron-hole pairs. Such states have a marked charge-transfer character, as revealed by the persistent Stark effect in the form of a second derivative in electroabsorption. Modeling shows that electrostatic effects associated with fluorination, combined with the steric hindrance due to the bulky side groups, drive the formation of spatially dislocated charge pairs with reduced recombination rates. This work enriches and broadens the current knowledge of the photophysics of 2DP, which will hopefully guide synthesis efforts toward novel materials with improved functionalities.

10.
J Phys Chem Lett ; 11(8): 2983-2991, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32227856

RESUMEN

Working organic-inorganic lead halide perovskite-based devices are notoriously sensitive to surface and interface effects. Using a combination of density functional theory (DFT) and time-dependent DFT methods, we report a comprehensive study of the changes (with respect to the bulk) in geometric and electronic structures going on at the (001) surface of a (tetragonal phase) methylammonium lead iodide perovskite slab, in the dark and upon photoexcitation. The formation of a hydrogen bonding pattern between the -NH3 groups of the organic cations and the iodine atoms of the outer inorganic layout is found to critically contribute to the relative thermodynamic stability of slabs with varying surface compositions and terminations. Most importantly, our results show that the hydrogen bond locking effects induced by the MA groups tend to protect the external two-dimensional lattice against large local structural deformations, i.e., the formation of a small exciton-polaron, at variance with purely inorganic lead halide perovskites.

11.
Nat Mater ; 18(4): 406, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30765889

RESUMEN

In the version of this Article originally published, the units of the Fig. 3a x axis were incorrectly given as meV. They should have been eV. This has now been corrected in all versions of the Article.

12.
Nat Mater ; 18(4): 349-356, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30643234

RESUMEN

Hybrid organic-inorganic semiconductors feature complex lattice dynamics due to the ionic character of the crystal and the softness arising from non-covalent bonds between molecular moieties and the inorganic network. Here we establish that such dynamic structural complexity in a prototypical two-dimensional lead iodide perovskite gives rise to the coexistence of diverse excitonic resonances, each with a distinct degree of polaronic character. By means of high-resolution resonant impulsive stimulated Raman spectroscopy, we identify vibrational wavepacket dynamics that evolve along different configurational coordinates for distinct excitons and photocarriers. Employing density functional theory calculations, we assign the observed coherent vibrational modes to various low-frequency (≲50 cm-1) optical phonons involving motion in the lead iodide layers. We thus conclude that different excitons induce specific lattice reorganizations, which are signatures of polaronic binding. This insight into the energetic/configurational landscape involving globally neutral primary photoexcitations may be relevant to a broader class of emerging hybrid semiconductor materials.

13.
Front Chem ; 7: 946, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32064245

RESUMEN

Low-dimensional hybrid perovskites have triggered significant research interest due to their intrinsically tunable optoelectronic properties and technologically relevant material stability. In particular, the role of the organic spacer on the inherent structural and optical features in two-dimensional (2D) perovskites is paramount for material optimization. To obtain a deeper understanding of the relationship between spacers and the corresponding 2D perovskite film properties, we explore the influence of the partial substitution of hydrogen atoms by fluorine in an alkylammonium organic cation, resulting in (Lc)2PbI4 and (Lf)2PbI4 2D perovskites, respectively. Consequently, optical analysis reveals a clear 0.2 eV blue-shift in the excitonic position at room temperature. This result can be mainly attributed to a band gap opening, with negligible effects on the exciton binding energy. According to Density Functional Theory (DFT) calculations, the band gap increases due to a larger distortion of the structure that decreases the atomic overlap of the wavefunctions and correspondingly bandwidth of the valence and conduction bands. In addition, fluorination impacts the structural rigidity of the 2D perovskite, resulting in a stable structure at room temperature and the absence of phase transitions at a low temperature, in contrast to the widely reported polymorphism in some non-fluorinated materials that exhibit such a phase transition. This indicates that a small perturbation in the material structure can strongly influence the overall structural stability and related phase transition of 2D perovskites, making them more robust to any phase change. This work provides key information on how the fluorine content in organic spacer influence the structural distortion of 2D perovskites and their optical properties which possess remarkable importance for future optoelectronic applications, for instance in the field of light-emitting devices or sensors.

14.
J Phys Chem Lett ; 9(12): 3416-3424, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29870266

RESUMEN

Layered two-dimensional organo-metal halide perovskites are currently in the limelight, largely because their versatile chemical composition offers the promise of tunable photophysical properties. We report here on (time-dependent) density functional theory [(TD)DFT] calculations of alkyl-ammonium lead iodide perovskites, where significant changes in the electronic structure and optical properties are predicted when using long versus short alkyl chain spacers. The mismatch between the structural organization in the inorganic and organic layers is epitomized for dodecyl chains that adopt a supramolecular packing similar to that of polyethylene, at the cost of distorting the inorganic frame and, in turn, opening the electronic band gap. These results rationalize recent experimental data and demonstrate that the optoelectronic properties of layered halide perovskite semiconductors can be modified through the use of electronically inert organic saturated chains.

15.
Sci Rep ; 8(1): 8115, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29802309

RESUMEN

Understanding the initial ultrafast excited state dynamics of methylammonium lead iodide (MAPI) perovskite is of vital importance to enable its fullest utilisation in optoelectronic devices and the design of improved materials. Here we have combined advanced measurements of the ultrafast photoluminescence from MAPI films up to 0.6 eV above the relaxed excited state with cutting-edge advanced non-adiabatic quantum dynamics simulations, to provide a powerful unique insight into the earliest time behaviour in MAPI. Our joint experimental-theoretical approach highlights that the cooling of holes from deep in the valence band to the valence band edge is fast, occurring on a 100-500 fs timescale. Cooling of electrons from high in the conduction band to the conduction band edge, however, is much slower, on the order of 1-10 ps. Density of states calculations indicate that excited states with holes deep in the valence band are greatly favoured upon photoexcitation, and this matches well with the fast (100-500 fs) formation time for the relaxed excited state observed in our ultrafast PL measurements. Consequently we are able to provide a complete observation of the initial excited state evolution in this important prototypical material.

16.
J Am Chem Soc ; 139(51): 18632-18639, 2017 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-29155583

RESUMEN

We investigate the origin of the broadband visible emission in layered hybrid lead-halide perovskites and its connection with structural and photophysical properties. We study ⟨001⟩ oriented thin films of hexylammonium (HA) lead iodide, (C6H16N)2PbI4, and dodecylammonium (DA) lead iodide, (C12H28N)2PbI4, by combining first-principles simulations with time-resolved photoluminescence, steady-state absorption and X-ray diffraction measurements on cooling from 300 to 4 K. Ultrafast transient absorption and photoluminescence measurements are used to track the formation and recombination of emissive states. In addition to the excitonic photoluminescence near the absorption edge, we find a red-shifted, broadband (full-width at half-maximum of about 0.4 eV), emission band below 200 K, similar to emission from ⟨110⟩ oriented bromide 2D perovskites at room temperature. The lifetime of this sub-band-gap emission exceeds that of the excitonic transition by orders of magnitude. We use X-ray diffraction measurements to study the changes in crystal lattice with temperature. We report changes in the octahedral tilt and lattice spacing in both materials, together with a phase change around 200 K in DA2PbI4. DFT simulations of the HA2PbI4 crystal structure indicate that the low-energy emission is due to interstitial iodide and related Frenkel defects. Our results demonstrate that white-light emission is not limited to ⟨110⟩ oriented bromide 2D perovskites but a general property of this class of system, and highlight the importance of defect control for the formation of low-energy emissive sites, which can provide a pathway to design tailored white-light emitters.

17.
Inorg Chem ; 56(1): 74-83, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-27668448

RESUMEN

The role of chlorine doping in CH3NH3PbI3 represents an important open issue in the use of hybrid perovskites for photovoltaic applications. In particular, even if a positive role of chlorine doping on perovskite film formation and on material morphology has been demonstrated, an inherent positive effect on the electronic and photovoltaic properties cannot be excluded. Here we carried out periodic density functional theory and Car-Parrinello molecular dynamics simulations, going down to ∼1% doping, to investigate the effect of chlorine on CH3NH3PbI3. We found that such a small doping has important effects on the dynamics of the crystalline structure, both with respect to the inorganic framework and with respect to the cation libration motion. Together, we observe a dynamic spatial localization of the valence and conduction states in separated spatial material regions, which takes place in the 10-1 ps time scale and which could be the key to ease of exciton dissociation and, likely, to small charge recombination in hybrid perovskites. Moreover, such localization is enhanced by chlorine doping, demonstrating an inherent positive role of chlorine doping on the electronic properties of this class of materials.

18.
ChemSusChem ; 9(20): 2994-3004, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27677891

RESUMEN

The dynamic evolution of the vibrational interactions in the prototypical CH3 NH3 PbI3 was studied through a comprehensive experimental and theoretical investigation with a focus on the interactions between the organic cations and the inorganic cage. To date, no clear picture has emerged on the critical and fundamental interactions between the two perovskite components, despite the relevance of phonons to the electronic properties of several classes of perovskites. For the first time, we have monitored the IR and nonresonant Raman response in the broad frequency range 30-3400 cm-1 and in the temperature interval 80-360 K. Strong changes in the energies of different vibrational modes with temperature are observed and examined in the framework of phonon-phonon interactions considering a significant anharmonic contribution to the phonon relaxation process. The vibrational relaxation of the bending modes and their reorientation activation energies identify that such mechanisms are governed by medium-to-strong hydrogen bonds in the orthorhombic phase; however, any ferroelectric ordering in the orthorhombic phase is governed mostly by dipole interactions. These changes imply that charge localization mechanisms play a primary role, and our study enriches the fundamental knowledge of phonon interactions and charge transport in CH3 NH3 PbI3 for the further development of optoelectronic applications.


Asunto(s)
Yoduros/química , Plomo/química , Metilaminas/química , Cationes , Vibración
19.
J Phys Chem Lett ; 6(12): 2223-31, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26266595

RESUMEN

Ferroelectricity in halide perovskites currently represents a crucial issue, as it may have an important role for the enhancement of solar cells efficiency. Simulations of ferroelectric properties based on density functional theory are conceptually more demanding compared with "conventional" inorganic ferroelectrics due to the presence of both organic and inorganic components in the same compound. Here we present a detailed study focused on the prototypical CH3NH3PbI3 perovskite. By using density functional theory combined with symmetry mode analysis, we disentangle the contributions of the methylammonium cations and the role of the inorganic framework, therefore suggesting possible routes to enhance the polarization in this compound. Our estimate of the polarization for the tetragonal phase at low temperature is ∼4.42 µC/cm(2), which is substantially lower than that of traditional perovskite oxides.

20.
J Phys Chem Lett ; 6(12): 2332-8, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26266613

RESUMEN

In the pursuit to better understand the mechanisms of perovskite solar cells we performed Raman and photoluminescence measurements of free-standing CH3NH3PbI3 films, comparing dark with working conditions. The films, grown on a glass substrate and sealed by a thin glass coverslip, were measured subsequent to dark and white-light pretreatments. The extremely slow changes we observe in both the Raman and photoluminescence cannot be regarded as electronic processes, which are much faster. Thus, the most probable explanation is of slow photoinduced structural changes. The CH3NH3PbI3 transformation between the dark and the light structures is reversible, with faster rates for the changes under illumination. The results seem to clarify several common observations associated with solar cell mechanisms, like performance improvement under light soaking. More important is the call for solar-cell-related investigation of CH3NH3PbI3 to take the photoinduced structural changes into consideration when measuring and interpreting the results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...