Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Zhongguo Fei Ai Za Zhi ; 27(6): 441-450, 2024 Jun 20.
Artículo en Chino | MEDLINE | ID: mdl-39026495

RESUMEN

The immune microenvironment plays a key role in the development and progression of tumors. In recent years, with the rapid advancement of high-throughput sequencing technologies, researchers have gained a deeper understanding of the composition and function of immune cells in the tumor microenvironment. However, traditional bulk sequencing technologies are limited in resolving heterogeneity at the single-cell level, constraining a comprehensive understanding of the complexity of the tumor microenvironment. The advent of single-cell RNA sequencing technology has brought new opportunities to uncover the heterogeneity of the immune microenvironment in lung cancer. Currently, T-cell-centered immunotherapy in clinical settings is prone to side effects affecting prognosis, such as immunogenic drug resistance or immune-related pneumonia, with the key factor being changes in the interactions between immune cells and tumor cells in the tumor microenvironment. Single-cell RNA sequencing technology can reveal the origins and functions of different subgroups within the tumor microenvironment from perspectives such as intercellular interactions and pseudotime analysis, thereby discovering new cell subgroups or novel biomarkers, providing new avenues for uncovering resistance to immunotherapy and monitoring therapeutic efficacy. This review comprehensively discusses the newest research techniques and advancements in single-cell RNA sequencing technology for unveiling the heterogeneity of the tumor microenvironment after lung cancer immunotherapy, offering insights for enhancing the precision and personalization of immunotherapy.
.


Asunto(s)
Neoplasias Pulmonares , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Inmunoterapia , Animales
3.
Int J Biol Sci ; 20(7): 2454-2475, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725854

RESUMEN

The emergence of Poly (ADP-ribose) polymerase inhibitors (PARPi) has marked the beginning of a precise targeted therapy era for ovarian cancer. However, an increasing number of patients are experiencing primary or acquired resistance to PARPi, severely limiting its clinical application. Deciphering the underlying mechanisms of PARPi resistance and discovering new therapeutic targets is an urgent and critical issue to address. In this study, we observed a close correlation between glycolysis, tumor angiogenesis, and PARPi resistance in ovarian cancer. Furthermore, we discovered that the natural compound Paris saponin VII (PS VII) partially reversed PARPi resistance in ovarian cancer and demonstrated synergistic therapeutic effects when combined with PARPi. Additionally, we found that PS VII potentially hindered glycolysis and angiogenesis in PARPi-resistant ovarian cancer cells by binding and stabilizing the expression of RORα, thus further inhibiting ECM1 and interfering with the VEGFR2/FAK/AKT/GSK3ß signaling pathway. Our research provides new targeted treatment for clinical ovarian cancer therapy and brings new hope to patients with PARPi-resistant ovarian cancer, effectively expanding the application of PARPi in clinical treatment.


Asunto(s)
Diosgenina/análogos & derivados , Glucólisis , Neovascularización Patológica , Neoplasias Ováricas , Saponinas , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Saponinas/farmacología , Saponinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Glucólisis/efectos de los fármacos , Línea Celular Tumoral , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Animales , Ratones Desnudos , Ratones , Angiogénesis
5.
Int J Biol Sci ; 19(16): 5204-5217, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928267

RESUMEN

Circulating tumor cells (CTCs) are cells that detach from the primary tumor and enter the bloodstream, playing a crucial role in the metastasis of lung cancer. Unfortunately, there is currently a lack of drugs specifically designed to target CTCs and prevent tumor metastasis. In this study, we present evidence that polyphyllin VII, a potent anticancer compound, effectively inhibits the metastasis of lung cancer by inducing a process called anoikis in CTCs. We observed that polyphyllin VII had significant cytotoxicity and inhibited colony formation, migration, and invasion in both our newly established cell line CTC-TJH-01 and a commercial lung cancer cell line H1975. Furthermore, we found that polyphyllin VII induced anoikis and downregulated the TrkB and EGFR-MEK/ERK signaling pathways. Moreover, activation of TrkB protein did not reverse the inhibitory effect of polyphyllin VII on CTCs, while upregulation of EGFR protein effectively reversed it. Furthermore, our immunodeficient mouse models recapitulated that polyphyllin VII inhibited lung metastasis, which was associated with downregulation of the EGFR protein, and reduced the number of CTCs disseminated into the lungs by inducing anoikis. Together, these results suggest that polyphyllin VII may be a promising compound for the treatment of lung cancer metastasis by targeting CTCs.


Asunto(s)
Neoplasias Pulmonares , Animales , Ratones , Anoicis , Línea Celular Tumoral , Receptores ErbB/genética , Neoplasias Pulmonares/metabolismo , Metástasis de la Neoplasia , Humanos
6.
Biol Proced Online ; 25(1): 29, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37953280

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related deaths worldwide, primarily due to its propensity for metastasis. Patients diagnosed with localized primary cancer have higher survival rates than those with metastasis. Thus, it is imperative to discover biomarkers for the early detection of NSCLC and the timely prediction of tumor metastasis to improve patient outcomes. METHODS: Here, we utilized an integrated approach to isolate and characterize plasma exosomes from NSCLC patients as well as healthy individuals. We then conducted proteomics analysis and parallel reaction monitoring to identify and validate the top-ranked proteins of plasma exosomes. RESULTS: Our study revealed that the proteome in exosomes from NSCLC patients with metastasis was distinctly different from that from healthy individuals. The former had larger diameters and lower concentrations of exosomes than the latter. Furthermore, among the 1220 identified exosomal proteins, we identified two distinct panels of biomarkers. The first panel of biomarkers (FGB, FGG, and VWF) showed potential for early NSCLC diagnosis and demonstrated a direct correlation with the survival duration of NSCLC patients. The second panel of biomarkers (CFHR5, C9, and MBL2) emerged as potential biomarkers for assessing NSCLC metastasis, of which CFHR5 alone was significantly associated with the overall survival of NSCLC patients. CONCLUSIONS: These findings underscore the potential of plasma exosomal biomarkers for early NSCLC diagnosis and metastasis prediction. Notably, CFHR5 stands out as a promising prognostic indicator for NSCLC patients. The clinical utility of exosomal biomarkers offers the potential to enhance the management of NSCLC.

8.
J Mater Chem B ; 11(15): 3453-3472, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37009696

RESUMEN

Combining chemotherapy and immunotherapy is a promising strategy for the treatment of non-small cell lung cancer (NSCLC) metastasis. However, platinum-based chemotherapeutics and immune checkpoint blockade-based cancer immunotherapy have toxic side effects and limitations. Ursolic acid (UA) and astragaloside IV (AS-IV) are natural compounds with anticancer activity sourced from Traditional Chinese medicine (TCM). However, their poor water solubilities and targeted deletions limit their medicinal value. In this study, we fabricated hyaluronic acid (HA)-modified UA/(AS-IV)-loaded polydopamine (PDA) nanomedicine (UA/(AS-IV)@PDA-HA) with a high yield at a low cost via simple synthesis. This represents a novel multifunctional nanomedicine that combines chemotherapy, photothermal therapy (PTT), and immunotherapy with an active tumor-targeting ability. The as-prepared nanomedicine not only increased the aqueous solubilities of UA and AS-IV, but also improved their active targeting abilities. HA binds specifically to the overexpressed cluster of differentiation 44 (CD44) on the surface of most cancer cells, thereby improving drug targeting. While evaluating the anticancer effect of UA/(AS-IV)@PDA-HA in vitro and in vivo, the PDA nanodelivery system significantly improved UA-mediated cytotoxicity and anti-metastatic ability against NSCLC cells. In addition, the system also improved the AS-IV-mediated self-immune response of tumor-related antigens, which further inhibited the growth and distant metastasis of NSCLC. Further, PDA nanomaterial-mediated PTT inhibited tumor growth substantially. UA/(AS-IV)@PDA-HA not only significantly eradicated the primary tumor but also strongly inhibited the distant metastasis of NSCLC in vitro and in vivo. Thus, it has immense potential for development as an efficient anti-metastatic agent for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas , Humanos , Ácido Hialurónico/farmacología , Nanomedicina , Ácido Ursólico
9.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1003467

RESUMEN

@#[摘 要] 目的:基于小鼠渐进衰老模型探讨衰老所致“正虚”的免疫功能衰退表征的特点。方法:使用不同月龄(2、6、15月龄)C57BL/6小鼠,通过流式细胞术检测并比较小鼠外周血和脾组织中T细胞、髓源性抑制细胞(MDSC)及其亚群的丰度变化。结果:外周血中T细胞亚群表型为CD3+CD4+CD44-CD62L+的幼稚CD4+ T细胞(2 vs 6月龄,P=0.137;2 vs 15月龄,P=0.004;6 vs 15月龄,P=0.105)和表型为CD3+CD8+CD44-CD62L+的幼稚CD8+ T细胞(2 vs 6月龄,P=0.179;2 vs 15月龄,P=0.001;6 vs 15月龄,P=0.015)出现与衰老有关的细胞比例降低,差异具有统计学意义。表型为CD3+CD4+CD44+CD62L+的中央记忆CD8+ T细胞出现与衰老有关的比例升高,差异具有统计学意义(2 vs 6月龄,P=0.01;2 vs 15月龄,P=0.007;6 vs 15月龄,P=0.164)。对脾组织的检测结果具有与外周血相同特点。同时,CD8+ T细胞比例随衰老逐渐升高(2 vs 6月龄,P=0.027;2 vs 15月龄,P<0.001;6 vs 15月龄,P<0.001);表型为CD8+CD28+的活化CD8+ T细胞亚群比例也出现随月龄增长的上升(2 vs 6月龄,P=0.863; 2 vs 15月龄,P=0.016;6 vs 15月龄,P=0.024),差异均具有统计学意义。结论:衰老所致“正虚”过程中,不同免疫细胞亚群变化并不都反映免疫抑制特点,虽然总体免疫功能下降,但单一表型难以反应整体免疫功能变化。

10.
Cancer Cell Int ; 22(1): 356, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36376934

RESUMEN

Metastasis is the primary cause of death in lung cancer patients. However, until now, effective drugs and intervention strategies for treating lung cancer metastasis have been lacking. This hypothesis focuses on circulating tumour cells (CTCs) to develop a new antimetastatic therapeutic strategy for lung cancer. Here, we outline the role of CTCs in tumour metastasis and their functional effects during the treatment of lung cancer patients. Additionally, we hypothesized the possibility of CTCs as a novel biomarker and therapeutic target in preventing and treating metastasis in patients with early-stage lung cancer. We hope that the realization of this hypothesis will improve the overall survival of lung cancer.

11.
Front Oncol ; 12: 882278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875082

RESUMEN

Nowadays, Jin-Fu-Kang oral liquid (JFK), one of Chinese herbal medicines (CHMs) preparations, has been widely used as an adjuvant therapy for primary non-small cell lung cancer (PNSCLC) patients with the syndrome of deficiency of both Qi and Yin (Qi-Yin deficiency pattern) based on Traditional Chinese Medicine (TCM) theory. However, we found insufficient evidence of how long-term CHM treatment influence PNSCLC patients' progression-free survival (PFS). Thus, using electronic medical records, we established a nomograph-based prognostic model for predicting PNSCLC patients' PFS involved with JFK supplementary formulas (JFK-SFs) over 6 months, in order to preliminarily investigate potential predictors highly related to adjuvant CHMs therapies in theoretical epidemiology. In our retrospective study, a series of 197 PNSCLC cases from Long Hua Hospital were enrolled by non-probability sampling and divided into 2 datasets at the ratio of 5:4 by Kennard-Stone algorithm, as a result of 109 in training dataset and 88 in validation dataset. Besides, TNM stage, operation history, sIL-2R, and CA724 were considered as 4 highly correlated predictors for modeling based on LASSO-Cox regression. Additionally, we respectively used training dataset and validation dataset for establishment including internal validation and external validation, and the prediction performance of model was measured by concordance index (C-index), integrated discrimination improvement, and net reclassification indices (NRI). Moreover, we found that the model containing clinical characteristics and bio-features presented the best performance by pairwise comparison. Next, the result of sensitivity analysis proved its stability. Then, for preliminarily examination of its discriminative power, all eligible cases were divided into high-risk or low-risk progression by the cut-off value of 57, in the light of predicted nomogram scores. Ultimately, a completed TRIPOD checklist was used for self-assessment of normativity and integrity in modeling. In conclusion, our model might offer crude probability of uncertainly individualized PFS with long-term CHMs therapy in the real-world setting, which could discern the individuals implicated with worse prognosis from the better ones. Nevertheless, our findings were prone to unmeasured bias caused by confounding factors, owing to retrospective cases series.

12.
BMC Complement Med Ther ; 22(1): 10, 2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35000605

RESUMEN

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) is a pivotal cellular phenomenon involved in tumour metastasis and progression. In gastric cancer (GC), EMT is the main reason for recurrence and metastasis in postoperative patients. Acacetin exhibits various biological activities. However, the inhibitory effect of acacetin on EMT in GC is still unknown. Herein, we explored the possible mechanism of acacetin on EMT in GC in vitro and in vivo. METHODS: In vitro, MKN45 and MGC803 cells were treated with acacetin, after which cell viability was detected by CCK-8 assays, cell migration and invasion were detected by using Transwell and wound healing assays, and protein expression was analysed by western blots and immunofluorescence staining. In vivo, a peritoneal metastasis model of MKN45 GC cells was used to investigate the effects of acacetin. RESULTS: Acacetin inhibited the proliferation, invasion and migration of MKN45 and MGC803 human GC cells by regulating the expression of EMT-related proteins. In TGF-ß1-induced EMT models, acacetin reversed the morphological changes from epithelial to mesenchymal cells, and invasion and migration were limited by regulating EMT. In addition, acacetin suppressed the activation of PI3K/Akt signalling and decreased the phosphorylation levels of TGF-ß1-treated GC cells. The in vivo experiments demonstrated that acacetin delayed the development of peritoneal metastasis of GC in nude mice. Liver metastasis was restricted by altering the expression of EMT-related proteins. CONCLUSION: Our study showed that the invasion, metastasis and TGF-ß1-induced EMT of GC are inhibited by acacetin, and the mechanism may involve the suppression of the PI3K/Akt/Snail signalling pathway. Therefore, acacetin is a potential therapeutic reagent for the treatment of GC patients with recurrence and metastasis.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Flavonas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Flavonas/química , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Factor de Crecimiento Transformador beta1
13.
Acta Biochim Biophys Sin (Shanghai) ; 53(8): 1027-1036, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34109980

RESUMEN

Targeted delivery and smart response of nanomedicine hold great promise for improving the therapeutic efficacy and alleviating the side effects of chemotherapy agents in cancer treatment. However, availability of only a few studies that discuss organic nanomedicines with these properties limits the development prospects of nanomedicines. In the present study, folic acid (FA)-targeted delivery and glutathione (GSH) smart responsive nanomedicine were rationally designed for paclitaxel (PTX) delivery for the treatment of lung cancer. Compared with other stimuli-responsive nanomedicines, this nanocarrier was not only sensitive to biologically relevant GSH for on-demand drug release but also biodegradable into biocompatible products after fulfilling its delivery task. The nanomedicine first entered tumor cells via FA and its receptor-mediated endocytosis. After the lysosomal escape, poly(lactic-co-glycolic acid) (PLGA) nanomedicine was triggered by a higher level of GSH and released its cargo into the tumor microenvironment. In vitro and in vivo results revealed that the PLGA nanomedicine not only inhibited the proliferation and promoted the apoptosis of lung cancer cells significantly but also possessed less toxic side effects when compared with free PTX. Therefore, the proposed drug delivery system demonstrates the potential of a multifunctional nano-platform to enhance bioavailability and reduce the side effects of chemotherapy agents.


Asunto(s)
Carcinoma Pulmonar de Lewis , Ácido Fólico , Glutatión/metabolismo , Neoplasias Pulmonares , Nanomedicina , Paclitaxel , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Animales , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Ácido Fólico/química , Ácido Fólico/farmacocinética , Ácido Fólico/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología
14.
J Ethnopharmacol ; 275: 114175, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33933571

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Circulating tumor cells (CTCs) play an important role in tumor metastasis and may be a target for metastasis prevention. The traditional Chinese medicine Jinfukang functions to improve immunity, prevent metastasis, and prolong lung cancer patient survival periods. Yet, whether Jinfukang prevents metastasis by regulating immune cells to clearance CTCs is still unknown. AIM OF THE STUDY: To explore the anti-metastasis mechanism of Jinfukang from the perspective of regulating NK cells to clear CTCs. MATERIALS AND METHODS: CTC-TJH-01 cell was treated with Jinfukang. Cytokine chip was used to detect cytokines in cell culture supernatant. Lymphocyte recruitment assay was detected by Transwell and flow cytometry. Protein expression was analysis by Western blot. LDH kit was used to detect cytotoxicity. NOD-SCID mice used for tail vein injection to study lung metastasis. RESULTS: Jinfukang could promote the expression and secretion of the chemokine CX3CL1 by CTCs. In addition, Jinfukang could promote the recruitment of natural killer (NK) cells by CTCs and significantly increase the cytotoxic effect of NK cells on CTCs. Moreover, Jinfukang could upregulate the expression of FasL and promote the secretion of TNF-α by NK cells and that NK cells could induce the apoptosis of CTCs through the Fas/FasL signaling pathway. Finally, we confirmed that Jinfukang could promote NK cells to kill CTCs and then inhibit lung cancer metastasis in vivo. The above effects of Jinfukang could be partially reversed by an anti-CX3CL1 mAb. CONCLUSIONS: These results suggest that Jinfukang may prevent lung cancer metastasis by enhancing the clearance of CTCs in the peripheral blood by NK cells, providing evidence for the anti-metastasis effect of Jinfukang.


Asunto(s)
Antineoplásicos/farmacología , Quimiocina CX3CL1/genética , Medicamentos Herbarios Chinos/farmacología , Células Asesinas Naturales/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Metástasis de la Neoplasia/prevención & control , Células Neoplásicas Circulantes/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Quimiocina CX3CL1/antagonistas & inhibidores , Quimiocina CX3CL1/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/uso terapéutico , Proteínas Ligadas a GPI/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Masculino , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia/inmunología , Células Neoplásicas Circulantes/inmunología , Células Neoplásicas Circulantes/patología , Receptores de Muerte Celular/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Receptor fas/metabolismo
15.
J Biomed Nanotechnol ; 17(1): 53-63, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33653496

RESUMEN

Compared with western medicine, traditional Chinese medicine can better regulate the internal environment and inhibit liver cancer recurrence and metastasis. Bushen Jianpi Recipe (BSJPR) is a traditional Chinese medicine for tonifying the kidney and invigorating the spleen. It has also been used to treat tumors and other related diseases. Here we explore the efficacy of BSJPR inhibition of hepatocellular carcinoma (HCC) in vivo and in vitro . We hypothesize that BSJPR reduces intrahepatic cholestasis and inflammation and increases expression of the bile acid receptor and downstream targets. This study aims to test this hypothesis and determine whether the inhibitory effect of BSJPR on liver cancer recurrence and metastasis is related to bile acid metabolism. We also observed changes in immune cell expression, suggesting that regulation of the immune microenvironment could inhibit the recurrence and metastasis of HCC. These findings provide a basis for the treatment of HCC and new ideas for follow-up studies of BSJPR.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Medicina Tradicional China , Metástasis de la Neoplasia , Microambiente Tumoral
16.
J Ethnopharmacol ; 267: 113473, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33068649

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Metastasis is the main cause of death in lung cancer patients. Circulating tumor cells (CTCs) may be an important target of metastasis intervention. Previous studies have shown that Jinfukang could prevent the recurrence and metastasis of lung cancer, and we have established a circulating lung tumor cell line CTC-TJH-01. However, whether Jinfukang inhibition of lung cancer metastasis is related to CTCs is still unknown. AIM OF THE STUDY: To further explore the mechanism of Jinfukang in anti-metastasis of lung cancer from the perspective of intervention of CTCs. MATERIALS AND METHODS: CTC-TJH-01 and H1975 cells were treated with Jinfukang. Cell viability was detected by CCK8, and the cell apoptosis was detected by flow cytometry. Transwell was used to detected cell migration and invasion. Cell anoikis was detected by anoikis detection kit. Protein expression was analysis by Western blot. RESULTS: Jinfukang could inhibit the proliferation, migration and invasion of CTC-TJH-01 and H1975 cells. Besides, Jinfukang could also induce anoikis in CTC-TJH-01 and H1975 cells. Analysis of the mRNA expression profile showed ECM-receptor interaction and focal adhesion were regulated by Jinfukang. Moreover, it was also find that Jinfukang significantly inhibited integrin/Src pathway in CTC-TJH-01 and H1975 cells. When suppress the expression of integrin with ATN-161, it could promote Jinfukang to inhibit migration and induce anoikis in CTC-TJH-01 and H1975 cells. CONCLUSIONS: Our results indicate that the migration and invasion of CTCs are inhibited by Jinfukang, and the mechanism may involve the suppression of integrin/Src axis to induce anoikis. These data suggest that Jinfukang exerts anti-metastatic effects in lung cancer may through anoikis.


Asunto(s)
Anoicis/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Movimiento Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Integrinas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Células Neoplásicas Circulantes/efectos de los fármacos , Familia-src Quinasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Invasividad Neoplásica , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Transducción de Señal
17.
Oncol Rep ; 43(5): 1387-1396, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32323807

RESUMEN

Solanum nigrum L. (Longkui) is one the most widely used anticancer herbs in traditional Chinese medicine. α­Solanine is an important ingredient of S. nigrum L. and has demonstrated anticancer properties in various types of cancer. However, the effects of α­solanine on colorectal cancer remain elusive. The aim of the present study was to assess the effects of α­solanine on human colorectal cancer cells. The results demonstrated that α­solanine inhibited the proliferation of RKO cells in a dose­ and time­dependent manner. In addition, α­solanine arrested the cell cycle at the G0/G1 phase and suppressed the expression levels of cyclin D1 and cyclin­dependent kinase 2 in RKO cells. α­Solanine induced apoptosis of RKO cells, as indicated by morphological changes and positive Annexin­FITC/propidium iodide staining. Additionally, α­solanine activated caspase­3, ­8 and ­9 in RKO cells, which contributed to α­solanine­induced apoptosis. α­Solanine also increased the generation of reactive oxygen species, which contributed to caspase activation and induction of apoptosis. α­Solanine inhibited the migration, invasion and adhesion of RKO cells, as well as the expression levels and activity of matrix metalloproteinase (MMP)­2 and MMP­9. In addition, α­solanine inhibited cell proliferation, activated caspase­3, ­8 and ­9, induced apoptosis, and inhibited the migration and invasion of HCT­116 cells. Furthermore, α­solanine inhibited tumor growth and induced apoptosis in vivo. These findings demonstrated that α­solanine effectively suppressed the growth and metastatic potential of human colorectal cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Colorrectales/tratamiento farmacológico , Ciclina D1/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Solanina/administración & dosificación , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , Solanina/química , Solanina/farmacología , Factores de Tiempo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Ethnopharmacol ; 256: 112802, 2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32240782

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jinfukang has long been used for the clinical treatment of lung cancer. Previous studies have shown that Jinfukang can induce the apoptosis of circulating tumor cells by intervening ROS-mediated DNA damage pathway. However, whether Jinfukang can inhibit the metastasis of circulating tumor cells and its mechanism are still unclear. AIM OF THE STUDY: To further investigate the mechanism of Jinfukang in anti-metastasis of lung cancer from the perspective of intervention of tumor exosomes. MATERIALS AND METHODS: The invadopodia formation was determined with immunofluorescence. Invasion and migration were detected using the Transwell assay. Ultracentrifugation was used to isolate exosomes. Exosomes were characterized by electron microscopy, nanoparticle tracking analysis and immunoblotting, and the protein profile was evaluated by proteomic analysis. The molecular functions, biological processes and signaling pathway enrichment analysis were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Key differentially expressed proteins were verified by Western blot. RESULTS: Jinfukang can inhibit the expression of MMP14, cortactin, Tks5 and the formation of invadopodia of CTC-TJH-01 cells. Furthermore, Jinfukang can significantly inhibit the invasion and migration of CTC-TJH-01 cells. The diameter of exosomes extracted from the CTC-TJH-01 cells treated by Jinfukang was 30-100 nm, and the exosomal markers CD63, CD81 and TSG101 were expressed. We identified 680 deferentially expressed proteins. Gene oncology analysis indicated that exosomes were mostly derived from plasma membrane and mainly involved in protein localization and intracellular signaling. The ingenuity pathway analysis showed that the EGF pathway was significantly inhibited, whereas the GP6 signaling pathway was significantly activated. We also confirmed that Jinfukang inhibited the expression of EGF pathway-related proteins in CTC-TJH-01 cells. Besides, when EGF was used to activate EGF signaling pathway, the inhibition of Jinfukang on CTC cell metastasis was reversed. CONCLUSION: Jinfukang inhibits the metastasis of CTC-TJH-01 cells through the EGF pathway.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Exosomas/efectos de los fármacos , Exosomas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Células Neoplásicas Circulantes/efectos de los fármacos , Células Neoplásicas Circulantes/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , MicroARNs/metabolismo , Proteómica/métodos , Transducción de Señal/efectos de los fármacos
19.
Exp Ther Med ; 18(6): 4249-4258, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31772627

RESUMEN

Non-small cell lung cancer (NSCLC) is the leading cause of lung cancer-associated mortality. Recent studies revealed that long non-coding (lnc)RNAs have crucial roles in human cancers. The present study was the first, to the best of our knowledge, to indicate that the lncRNA transducer of ERBB2, 1-antisense 1 (TOB1-AS1) acts as a tumor suppressor in NSCLC. Knockdown of TOB1-AS1 significantly induced NSCLC cell migration, invasion and proliferation. It was also demonstrated that the higher expression of TOB1-AS1 in NSCLC samples was associated with longer overall survival time. Furthermore, a TOB1-AS1-mediated competing endogenous RNA network in NSCLC was constructed, including Homo sapiens (hsa)-microRNA (miR)-27a-3p, hsa-miR-23a-3p, hsa-miR-23b-3p, hsa-miR-27b-3p, hsa-miR-23c, dynein cytoplasmic 2 light intermediate chain 1, E4F transcription factor 1, TSPY-like 4, component of oligomeric Golgi complex 7, inositol hexakisphosphate kinase 2 and deltex E3 ubiquitin ligase 3. Of note, dysregulation of targets of TOB1-AS1 was associated with the prognosis of NSCLC patients. The present study suggested that TOB1-AS1 may serve as a novel biomarker for NSCLC.

20.
BMC Complement Altern Med ; 19(1): 204, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391058

RESUMEN

BACKGROUND: Metastasis is the main cause of lung cancer death. As a seed of metastasis, circulating tumor cells are an important target for metastasis intervention. The traditional Chinese medicine, Jinfukang, has been clinically available for the treatment of non-small cell lung cancer (NSCLC). In this study, we investigated the action and underlying mechanisms of Jinfukang against circulating lung tumor cells. METHODS: The cell counting kit-8 (CCK-8), colony formation and cell cycle assays were used to study the cell proliferation ability. Flow cytometry was used to detect the apoptosis and the expression level of ROS and Caspase-3. Comet and TUNEL assays were used to detect DNA damage. DNA damage related pathway protein was detected by western blot. RESULTS: Jinfukang significantly inhibits the proliferation of CTC-TJH-01 cells by inducing G1 phase arrest and inhibits their colony formation in a dose-dependent manner. Moreover, Jinfukang induces apoptosis in CTC-TJH-01 cells through the ROS-mediated ATM/ATR-p53 pathway and DNA damage. CONCLUSIONS: Our findings suggest that Jinfukang may be a potential drug for lung cancer metastasis.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Daño del ADN/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Células Neoplásicas Circulantes/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Células Neoplásicas Circulantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA