Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809771

RESUMEN

Alzheimer's disease (AD) is one of the most devastating neurodegenerative disorders, characterized by multiple pathological features. Therefore, multi-target drug discovery has been one of the most active fields searching for new effective anti-AD therapies. Herein, a series of hybrid compounds are reported which were designed and developed by combining an aryl-sulfonamide function with a benzyl-piperidine moiety, the pharmacophore of donepezil (a current anti-AD acetylcholinesterase AChE inhibitor drug) or its benzyl-piperazine analogue. The in vitro results indicate that some of these hybrids achieve optimized activity towards two main AD targets, by displaying excellent AChE inhibitory potencies, as well as the capability to prevent amyloid-ß (Aß) aggregation. Some of these hybrids also prevented Aß-induced cell toxicity. Significantly, drug-like properties were predicted, including for blood-brain permeability. Compound 9 emerged as a promising multi-target lead compound (AChE inhibition (IC50 1.6 µM); Aß aggregation inhibition 60.7%). Overall, this family of hybrids is worthy of further exploration, due to the wide biological activity of sulfonamides.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Donepezilo/farmacología , Sulfonamidas/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Línea Celular Tumoral , Inhibidores de la Colinesterasa/farmacología , Humanos , Ligandos , Piperazinas/farmacología , Piperidinas/farmacología , Relación Estructura-Actividad
2.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33203094

RESUMEN

Peptidoglycan (PGN) is a major constituent of most bacterial cell walls that is recognized as a primary target of the innate immune system. The availability of pure PGN molecules has become key to different biological studies. This review aims to (1) provide an overview of PGN biosynthesis, focusing on the main biosynthetic intermediates; (2) focus on the challenges for chemical synthesis posed by the unique and complex structure of PGN; and (3) cover the synthetic routes of PGN fragments developed to date. The key difficulties in the synthesis of PGN molecules mainly involve stereoselective glycosylation involving NAG derivatives. The complex synthesis of the carbohydrate backbone commonly involves multistep sequences of chemical reactions to install the lactyl moiety at the O-3 position of NAG derivatives and to control enantioselective glycosylation. Recent advances are presented and synthetic routes are described according to the main strategy used: (i) based on the availability of starting materials such as glucosamine derivatives; (ii) based on a particular orthogonal synthesis; and (iii) based on the use of other natural biopolymers as raw materials.

3.
Carbohydr Polym ; 224: 115133, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31472863

RESUMEN

An unprecedented approach towards oligosaccharides containing N-acetylglucosamine-N-acetylmuramic (NAG-NAM) units was developed. These novel bacterial cell wall surrogates were obtained from chitosan via a top down approach involving both chemical and enzymatic reactions. The chemical modification of chitosan using a molecular clamp based strategy, allowed obtaining N-acetylglucosamine-N-acetylmuramic (NAG-NAM) containing oligomers. Intercalation of NAM residues was confirmed through the analysis of oligosaccharide fragments from enzymatic digestion and it was found that this route affords NAG-NAM containing oligosaccharides in 33% yield. These oligosaccharides mimic the carbohydrate basic skeleton of most bacterial cell surfaces. The oligosaccharides prepared are biologically relevant and will serve as a platform for further molecular recognition studies with different receptors and enzymes of both bacterial cell wall and innate immune system. This strategy combining both chemical modification and enzymatic digestion provides a novel and simple route for an easy access to bacterial cell wall fragments - biologically important targets.


Asunto(s)
Acetilglucosamina/química , Quitosano/química , Ácidos Murámicos/química , Oligosacáridos/química , Endopeptidasas/metabolismo , Monosacáridos/análisis , Muramidasa/metabolismo , Oligosacáridos/metabolismo
4.
Chem Asian J ; 11(24): 3468-3481, 2016 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-27723949

RESUMEN

Chitin and chitosan are attractive biopolymers with enormous structural possibilities for chemical modification, creating platforms for new chemical entities with a broad scope of applications, ranging from material science to medicine. During the last few years, incredible efforts have been dedicated to the regioselective modification of these biopolymers paving the way for improved properties and tailored activities. Herein, the most recent advances in chitin/chitosan regioselective modification, reaction conditions, selectivity, and the impact on its applications are highlighted. Moreover, the recent focus on chitooligosaccharides, their regioselective and chemoselective functionalization, as well as their role in biological studies, including molecular recognition with several biological targets are also covered.


Asunto(s)
Quitina/química , Quitosano/química , Oligosacáridos/química , Acilación , Alquilación , Biopolímeros/química , Quitina/análogos & derivados , Quitina/síntesis química , Oligosacáridos/síntesis química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...