Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37111535

RESUMEN

Plantago major L. is a plant available worldwide that has been traditionally used for several medical applications due to its wound healing, anti-inflammatory, and antimicrobial properties. This work aimed to develop and evaluate a nanostructured PCL electrospun dressing with P. major extract encapsulated in nanofibers for applications in wound healing. The extract from leaves was obtained by extraction in a mixture of water:ethanol = 1:1. The freeze-dried extract presented a minimum inhibitory concentration (MIC) for Staphylococcus Aureus susceptible and resistant to methicillin of 5.3 mg/mL, a high antioxidant capacity, but a low content of total flavonoids. Electrospun mats without defects were successfully produced using two P. major extract concentrations based on the MIC value. The extract incorporation in PCL nanofibers was confirmed using FTIR and contact angle measurements. The PCL/P. major extract was evaluated using DSC and TGA demonstrating that the incorporation of the extract decreases the thermal stability of the mats as well as the degree of crystallinity of PCL-based fibers. The P. major extract incorporation on electrospun mats produced a significant swelling degree (more than 400%) and increased the capacity of adsorbing wound exudates and moisture, important characteristics for skin healing. The extract-controlled release evaluated using in vitro study in PBS (pH, 7.4) shows that the P. major extract delivery from the mats occurs in the first 24 h, demonstrating their potential capacity to be used in wound healing.

2.
Mater Sci Eng C Mater Biol Appl ; 112: 110852, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32409029

RESUMEN

The present study describes the development of a chlorhexidine long-term drug delivery system using starch as a biodegradable polymer base. Three batches of thermoplastic starch films, containing starch particles/nanoparticles and chlorhexidine (CHX), were manufactured by casting. Morphological characterization showed an irregular surface with particles incorporated with chlorhexidine agglomerated in a starch matrix. Nanoindentation showed that the control film (without chlorhexidine) presented a more plastic and rigid behavior in relation to the films containing CHX. CHX was partially bounded to starch and prevented starch crystallization. Starch nanoparticles formed by precipitation were observed through transmission electron microscopy. By incorporating CHX into the solution, the nanoparticles presented different morphology, suggesting absorption of the drug. In vitro drug release was observed for 21 days by UV-vis spectrophotometry and released CHX amounted up to 19 mg/100 ml. Films presented microbiological potential for inhibiting Staphylococcus aureus growth as evaluated by the disk diffusion test in agar. It has been concluded that the developed film met the main requirements for a drug delivery system and that it is possible to be produced from a simple, cheap and reproduceable process.


Asunto(s)
Antiinfecciosos Locales/química , Clorhexidina/análogos & derivados , Portadores de Fármacos/química , Almidón/química , Zea mays/metabolismo , Antiinfecciosos Locales/metabolismo , Antiinfecciosos Locales/farmacología , Clorhexidina/química , Clorhexidina/metabolismo , Clorhexidina/farmacología , Pruebas Antimicrobianas de Difusión por Disco , Liberación de Fármacos , Módulo de Elasticidad , Nanopartículas/química , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...