Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
bioRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39229231

RESUMEN

The precise onset of flowering is crucial to ensure successful plant reproduction. The gene FLOWERING LOCUS T ( FT ) encodes florigen, a mobile signal produced in leaves that initiates flowering at the shoot apical meristem. In response to seasonal changes, FT is induced in phloem companion cells located in distal leaf regions. Thus far, a detailed molecular characterization of the FT -expressing cells has been lacking. Here, we used bulk nuclei RNA-seq and single nuclei RNA (snRNA)-seq to investigate gene expression in FT -expressing cells and other phloem companion cells. Our bulk nuclei RNA-seq demonstrated that FT -expressing cells in cotyledons and in true leaves differed transcriptionally. Within the true leaves, our snRNA-seq analysis revealed that companion cells with high FT expression form a unique cluster in which many genes involved in ATP biosynthesis are highly upregulated. The cluster also expresses other genes encoding small proteins, including the flowering and stem growth inducer FPF1-LIKE PROTEIN 1 (FLP1) and the anti-florigen BROTHER OF FT AND TFL1 (BFT). In addition, we found that the promoters of FT and the genes co-expressed with FT in the cluster were enriched for the consensus binding motifs of NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1). Overexpression of the paralogous NIGT1.2 and NIGT1.4 repressed FT expression and significantly delayed flowering under nitrogen-rich conditions, consistent with NIGT1s acting as nitrogen-dependent FT repressors. Taken together, our results demonstrate that major FT -expressing cells show a distinct expression profile that suggests that these cells may produce multiple systemic signals to regulate plant growth and development.

2.
PLoS Genet ; 20(8): e1011363, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39150991

RESUMEN

Many of the most highly conserved elements in the human genome are "poison exons," alternatively spliced exons that contain premature termination codons and permit post-transcriptional regulation of mRNA abundance through induction of nonsense-mediated mRNA decay (NMD). Poison exons are widely assumed to be highly conserved due to their presumed importance for organismal fitness, but this functional importance has never been tested in the context of a whole organism. Here, we report that a poison exon in Smndc1 is conserved across mammals and plants and plays a molecular autoregulatory function in both kingdoms. We generated mouse and A. thaliana models lacking this poison exon to find its loss leads to deregulation of SMNDC1 protein levels, pervasive alterations in mRNA processing, and organismal size restriction. Together, these models demonstrate the importance of poison exons for both molecular and organismal phenotypes that likely explain their extraordinary conservation.


Asunto(s)
Empalme Alternativo , Arabidopsis , Exones , Degradación de ARNm Mediada por Codón sin Sentido , Animales , Exones/genética , Ratones , Humanos , Degradación de ARNm Mediada por Codón sin Sentido/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Empalme Alternativo/genética , Codón sin Sentido/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencia Conservada
3.
Nat Commun ; 15(1): 5868, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997252

RESUMEN

The 3' end of a gene, often called a terminator, modulates mRNA stability, localization, translation, and polyadenylation. Here, we adapted Plant STARR-seq, a massively parallel reporter assay, to measure the activity of over 50,000 terminators from the plants Arabidopsis thaliana and Zea mays. We characterize thousands of plant terminators, including many that outperform bacterial terminators commonly used in plants. Terminator activity is species-specific, differing in tobacco leaf and maize protoplast assays. While recapitulating known biology, our results reveal the relative contributions of polyadenylation motifs to terminator strength. We built a computational model to predict terminator strength and used it to conduct in silico evolution that generated optimized synthetic terminators. Additionally, we discover alternative polyadenylation sites across tens of thousands of terminators; however, the strongest terminators tend to have a dominant cleavage site. Our results establish features of plant terminator function and identify strong naturally occurring and synthetic terminators.


Asunto(s)
Arabidopsis , Poliadenilación , Zea mays , Zea mays/genética , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Regiones Terminadoras Genéticas/genética , Nicotiana/genética , Nicotiana/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
bioRxiv ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39026747

RESUMEN

Since their initial discovery in maize, transposable elements (TEs) have emerged as being integral to the evolution of maize, accounting for 80% of its genome. However, the repetitive nature of TEs has hindered our understanding of their regulatory potential. Here, we demonstrate that long-read chromatin fiber sequencing (Fiber-seq) permits the comprehensive annotation of the regulatory potential of maize TEs. We uncover that only 94 LTR retrotransposons contain the functional epigenetic architecture required for mobilization within maize leaves. This epigenetic architecture degenerates with evolutionary age, resulting in solo TE enhancers being preferentially marked by simultaneous hyper-CpG methylation and chromatin accessibility, an architecture markedly divergent from canonical enhancers. We find that TEs shape maize gene regulation by creating novel promoters within the TE itself as well as through TE-mediated gene amplification. Lastly, we uncover a pervasive epigenetic code directing TEs to specific loci, including that locus that sparked McClintock's discovery of TEs.

5.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746097

RESUMEN

Seasonal changes in spring induce flowering by expressing the florigen, FLOWERING LOCUS T (FT), in Arabidopsis. FT is expressed in unique phloem companion cells with unknown characteristics. The question of which genes are co-expressed with FT and whether they have roles in flowering remains elusive. Through tissue-specific translatome analysis, we discovered that under long-day conditions with the natural sunlight red/far-red ratio, the FT-producing cells express a gene encoding FPF1-LIKE PROTEIN 1 (FLP1). The master FT regulator, CONSTANS (CO), controls FLP1 expression, suggesting FLP1's involvement in the photoperiod pathway. FLP1 promotes early flowering independently of FT, is active in the shoot apical meristem, and induces the expression of SEPALLATA 3 (SEP3), a key E-class homeotic gene. Unlike FT, FLP1 facilitates inflorescence stem elongation. Our cumulative evidence indicates that FLP1 may act as a mobile signal. Thus, FLP1 orchestrates floral initiation together with FT and promotes inflorescence stem elongation during reproductive transitions.

6.
Plant Cell ; 36(7): 2570-2586, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38513612

RESUMEN

Enhancers are cis-regulatory elements that shape gene expression in response to numerous developmental and environmental cues. In animals, several models have been proposed to explain how enhancers integrate the activity of multiple transcription factors. However, it remains largely unclear how plant enhancers integrate transcription factor activity. Here, we use Plant STARR-seq to characterize 3 light-responsive plant enhancers-AB80, Cab-1, and rbcS-E9-derived from genes associated with photosynthesis. Saturation mutagenesis revealed mutations, many of which clustered in short regions, that strongly reduced enhancer activity in the light, in the dark, or in both conditions. When tested in the light, these mutation-sensitive regions did not function on their own; rather, cooperative interactions with other such regions were required for full activity. Epistatic interactions occurred between mutations in adjacent mutation-sensitive regions, and the spacing and order of mutation-sensitive regions in synthetic enhancers affected enhancer activity. In contrast, when tested in the dark, mutation-sensitive regions acted independently and additively in conferring enhancer activity. Taken together, this work demonstrates that plant enhancers show evidence for both cooperative and additive interactions among their functional elements. This knowledge can be harnessed to design strong, condition-specific synthetic enhancers.


Asunto(s)
Arabidopsis , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Mutación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Epistasis Genética , Luz
7.
Plant Cell ; 36(5): 1186-1204, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382084

RESUMEN

The rich diversity of angiosperms, both the planet's dominant flora and the cornerstone of agriculture, is integrally intertwined with a distinctive evolutionary history. Here, we explore the interplay between angiosperm genome organization and botanical diversity, empowered by genomic approaches ranging from genetic linkage mapping to analysis of gene regulation. Commonality in the genetic hardware of plants has enabled robust comparative genomics that has provided a broad picture of angiosperm evolution and implicated both general processes and specific elements in contributing to botanical diversity. We argue that the hardware of plant genomes-both in content and in dynamics-has been shaped by selection for rather substantial differences in gene regulation between plants and animals such as maize and human, organisms of comparable genome size and gene number. Their distinctive genome content and dynamics may reflect in part the indeterminate development of plants that puts strikingly different demands on gene regulation than in animals. Repeated polyploidization of plant genomes and multiplication of individual genes together with extensive rearrangement and differential retention provide rich raw material for selection of morphological and/or physiological variations conferring fitness in specific niches, whether natural or artificial. These findings exemplify the burgeoning information available to employ in increasing knowledge of plant biology and in modifying selected plants to better meet human needs.


Asunto(s)
Genoma de Planta , Magnoliopsida , Genoma de Planta/genética , Magnoliopsida/genética , Poliploidía , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genómica/métodos , Variación Genética
8.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37398426

RESUMEN

The 3' end of a gene, often called a terminator, modulates mRNA stability, localization, translation, and polyadenylation. Here, we adapted Plant STARR-seq, a massively parallel reporter assay, to measure the activity of over 50,000 terminators from the plants Arabidopsis thaliana and Zea mays. We characterize thousands of plant terminators, including many that outperform bacterial terminators commonly used in plants. Terminator activity is species-specific, differing in tobacco leaf and maize protoplast assays. While recapitulating known biology, our results reveal the relative contributions of polyadenylation motifs to terminator strength. We built a computational model to predict terminator strength and used it to conduct in silico evolution that generated optimized synthetic terminators. Additionally, we discover alternative polyadenylation sites across tens of thousands of terminators; however, the strongest terminators tend to have a dominant cleavage site. Our results establish features of plant terminator function and identify strong naturally occurring and synthetic terminators.

9.
New Phytol ; 241(1): 253-266, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37865885

RESUMEN

Isogenic individuals can display seemingly stochastic phenotypic differences, limiting the accuracy of genotype-to-phenotype predictions. The extent of this phenotypic variation depends in part on genetic background, raising questions about the genes involved in controlling stochastic phenotypic variation. Focusing on early seedling traits in Arabidopsis thaliana, we found that hypomorphs of the cuticle-related gene LIPID TRANSFER PROTEIN 2 (LTP2) greatly increased variation in seedling phenotypes, including hypocotyl length, gravitropism and cuticle permeability. Many ltp2 hypocotyls were significantly shorter than wild-type hypocotyls while others resembled the wild-type. Differences in epidermal properties and gene expression between ltp2 seedlings with long and short hypocotyls suggest a loss of cuticle integrity as the primary determinant of the observed phenotypic variation. We identified environmental conditions that reveal or mask the increased variation in ltp2 hypomorphs and found that increased expression of its closest paralog LTP1 is necessary for ltp2 phenotypes. Our results illustrate how decreased expression of a single gene can generate starkly increased phenotypic variation in isogenic individuals in response to an environmental challenge.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Interacción Gen-Ambiente , Genotipo , Hipocótilo/metabolismo , Fenotipo , Plantones/genética , Plantones/metabolismo
10.
Cell ; 186(23): 5015-5027.e12, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949057

RESUMEN

Embryonic development is remarkably robust, but temperature stress can degrade its ability to generate animals with invariant anatomy. Phenotypes associated with environmental stress suggest that some cell types are more sensitive to stress than others, but the basis of this sensitivity is unknown. Here, we characterize hundreds of individual zebrafish embryos under temperature stress using whole-animal single-cell RNA sequencing (RNA-seq) to identify cell types and molecular programs driving phenotypic variability. We find that temperature perturbs the normal proportions and gene expression programs of numerous cell types and also introduces asynchrony in developmental timing. The notochord is particularly sensitive to temperature, which we map to a specialized cell type: sheath cells. These cells accumulate misfolded protein at elevated temperature, leading to a cascading structural failure of the notochord and anatomic defects. Our study demonstrates that whole-animal single-cell RNA-seq can identify mechanisms for developmental robustness and pinpoint cell types that constitute key failure points.


Asunto(s)
Proteostasis , Pez Cebra , Animales , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Temperatura , Pez Cebra/crecimiento & desarrollo
11.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37781598

RESUMEN

Protein quality control (PQC) is carried out in part by the chaperone Hsp70, in concert with adapters of the J-domain protein (JDP) family. The JDPs, also called Hsp40s, are thought to recruit Hsp70 into complexes with specific client proteins. However, the molecular principles regulating this process are not well understood. We describe the de novo design of a set of Hsp70 binding proteins that either inhibited or stimulated Hsp70's ATPase activity; a stimulating design promoted the refolding of denatured luciferase in vitro, similar to native JDPs. Targeting of this design to intracellular condensates resulted in their nearly complete dissolution. The designs inform our understanding of chaperone structure-function relationships and provide a general and modular way to target PQC systems to condensates and other cellular targets.

12.
J Vis Exp ; (196)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37427916

RESUMEN

The transfection of maize mesophyll cells often involves digesting the plant cell walls to create protoplasts and then inserting DNA via electroporation or polyethylene glycol (PEG). Previous methods were developed to produce tens of thousands of transfected protoplasts at once. Here, we describe a straightforward method to isolate and transfect millions of leaf mesophyll protoplasts in maize (Zea mays L.). This streamlined process removes certain common protoplasting steps, such as washing in W5. Additionally, steps such as centrifugation, PEG-mediated transfection, and incubation have been modified to work with a greater number of protoplasts. The ability to express large libraries of plasmid constructs enables genome-scale experiments, such as massively parallel reporter assays in maize.


Asunto(s)
Protoplastos , Zea mays , Zea mays/genética , Transfección , Hojas de la Planta/genética , Células del Mesófilo
13.
Curr Opin Plant Biol ; 75: 102403, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37331209

RESUMEN

Understanding plant gene regulation has been a priority for generations of plant scientists. However, due to its complex nature, the regulatory code governing plant gene expression has yet to be deciphered comprehensively. Recently developed methods-often relying on next-generation sequencing technology and state-of-the-art computational approaches-have started to further our understanding of the gene regulatory logic used by plants. In this review, we discuss these methods and the insights into the regulatory code of plants that they can yield.


Asunto(s)
Genes de Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Regulación de la Expresión Génica de las Plantas/genética , Cromatina
14.
bioRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37214854

RESUMEN

Isogenic individuals can display seemingly stochastic phenotypic differences, limiting the accuracy of genotype-to-phenotype predictions. The extent of this phenotypic variation depends in part on genetic background, raising questions about the genes involved in controlling stochastic phenotypic variation. Focusing on early seedling traits in Arabidopsis thaliana, we found that hypomorphs of the cuticle-related gene LTP2 greatly increased variation in seedling phenotypes, including hypocotyl length, gravitropism and cuticle permeability. Many ltp2 hypocotyls were significantly shorter than wild-type hypocotyls while others resembled the wild type. Differences in epidermal properties and gene expression between ltp2 seedlings with long and short hypocotyls suggest a loss of cuticle integrity as the primary determinant of the observed phenotypic variation. We identified environmental conditions that reveal or mask the increased variation in ltp2 hypomorphs, and found that increased expression of its closest paralog LTP1 is necessary for ltp2 phenotypes. Our results illustrate how decreased expression of a single gene can generate starkly increased phenotypic variation in isogenic individuals in response to an environmental challenge.

15.
BMC Plant Biol ; 23(1): 270, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37211599

RESUMEN

BACKGROUND: The genetic information contained in the genome of an organism is organized in genes and regulatory elements that control gene expression. The genomes of multiple plants species have already been sequenced and the gene repertory have been annotated, however, cis-regulatory elements remain less characterized, limiting our understanding of genome functionality. These elements act as open platforms for recruiting both positive- and negative-acting transcription factors, and as such, chromatin accessibility is an important signature for their identification. RESULTS: In this work we developed a transgenic INTACT [isolation of nuclei tagged in specific cell types] system in tetraploid wheat for nuclei purifications. Then, we combined the INTACT system together with the assay for transposase-accessible chromatin with sequencing [ATAC-seq] to identify open chromatin regions in wheat root tip samples. Our ATAC-seq results showed a large enrichment of open chromatin regions in intergenic and promoter regions, which is expected for regulatory elements and that is similar to ATAC-seq results obtained in other plant species. In addition, root ATAC-seq peaks showed a significant overlap with a previously published ATAC-seq data from wheat leaf protoplast, indicating a high reproducibility between the two experiments and a large overlap between open chromatin regions in root and leaf tissues. Importantly, we observed overlap between ATAC-seq peaks and cis-regulatory elements that have been functionally validated in wheat, and a good correlation between normalized accessibility and gene expression levels. CONCLUSIONS: We have developed and validated an INTACT system in tetraploid wheat that allows rapid and high-quality nuclei purification from root tips. Those nuclei were successfully used to performed ATAC-seq experiments that revealed open chromatin regions in the wheat genome that will be useful to identify cis-regulatory elements. The INTACT system presented here will facilitate the development of ATAC-seq datasets in other tissues, growth stages, and under different growing conditions to generate a more complete landscape of the accessible DNA regions in the wheat genome.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Plantones , Plantones/genética , Triticum/genética , Reproducibilidad de los Resultados , Tetraploidía , Cromatina/genética , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
16.
Genetics ; 224(1)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36919976

RESUMEN

The genes that encode ribosomal RNAs are present in several hundred copies in most eukaryotes. These vast arrays of repetitive ribosomal DNA (rDNA) have been implicated not just in ribosome biogenesis, but also aging, cancer, genome stability, and global gene expression. rDNA copy number is highly variable among and within species; this variability is thought to associate with traits relevant to human health and disease. Here we investigate the phenotypic consequences of multicellular life at the lower bounds of rDNA copy number. We use the model Caenorhabditis elegans, which has previously been found to complete embryogenesis using only maternally provided ribosomes. We find that individuals with rDNA copy number reduced to ∼5% of wild type are capable of further development with variable penetrance. Such individuals are sterile and exhibit severe morphological defects, particularly in post-embryonically dividing tissues such as germline and vulva. Developmental completion and fertility are supported by an rDNA copy number ∼10% of wild type, with substantially delayed development. Worms with rDNA copy number reduced to ∼33% of wild type display a subtle developmental timing defect that was absent in worms with higher copy numbers. Our results support the hypothesis that rDNA requirements vary across tissues and indicate that the minimum rDNA copy number for fertile adulthood is substantially less than the lowest naturally observed total copy number. The phenotype of individuals with severely reduced rDNA copy number is highly variable in penetrance and presentation, highlighting the need for continued investigation into the biological consequences of rDNA copy number variation.


Asunto(s)
Caenorhabditis elegans , Variaciones en el Número de Copia de ADN , Animales , Femenino , Humanos , Adulto , ADN Ribosómico/genética , Caenorhabditis elegans/genética , Ribosomas , Fenotipo
17.
Cell Rep ; 42(3): 112161, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36842087

RESUMEN

Timely completion of genome replication is a prerequisite for mitosis, genome integrity, and cell survival. A challenge to this timely completion comes from the need to replicate the hundreds of untranscribed copies of rDNA that organisms maintain in addition to the copies required for ribosome biogenesis. Replication of these rDNA arrays is relegated to late S phase despite their large size, repetitive nature, and essentiality. Here, we show that, in Saccharomyces cerevisiae, reducing the number of rDNA repeats leads to early rDNA replication, which results in delaying replication elsewhere in the genome. Moreover, cells with early-replicating rDNA arrays and delayed genome-wide replication aberrantly release the mitotic phosphatase Cdc14 from the nucleolus and enter anaphase prematurely. We propose that rDNA copy number determines the replication time of the rDNA locus and that the release of Cdc14 upon completion of rDNA replication is a signal for cell cycle progression.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anafase , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Ribosomas/metabolismo , Replicación del ADN/genética , Replicación Viral
18.
Genetics ; 223(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36303325

RESUMEN

Argonaute 1 (AGO1), the principal protein component of microRNA-mediated regulation, plays a key role in plant growth and development. AGO1 physically interacts with the chaperone HSP90, which buffers cryptic genetic variation in plants and animals. We sought to determine whether genetic perturbation of AGO1 in Arabidopsis thaliana would also reveal cryptic genetic variation, and if so, whether AGO1-dependent loci overlap with those dependent on HSP90. To address these questions, we introgressed a hypomorphic mutant allele of AGO1 into a set of mapping lines derived from the commonly used Arabidopsis strains Col-0 and Ler. Although we identified several cases in which AGO1 buffered genetic variation, none of the AGO1-dependent loci overlapped with those buffered by HSP90 for the traits assayed. We focused on 1 buffered locus where AGO1 perturbation uncoupled the traits days to flowering and rosette leaf number, which are otherwise closely correlated. Using a bulk segregant approach, we identified a nonfunctional Ler hua2 mutant allele as the causal AGO1-buffered polymorphism. Introduction of a nonfunctional hua2 allele into a Col-0 ago1 mutant background recapitulated the Ler-dependent ago1 phenotype, implying that coupling of these traits involves different molecular players in these closely related strains. Taken together, our findings demonstrate that even though AGO1 and HSP90 buffer genetic variation in the same traits, these robustness regulators interact epistatically with different genetic loci, suggesting that higher-order epistasis is uncommon. Plain Language Summary Argonaute 1 (AGO1), a key player in plant development, interacts with the chaperone HSP90, which buffers environmental and genetic variation. We found that AGO1 buffers environmental and genetic variation in the same traits; however, AGO1-dependent and HSP90-dependent loci do not overlap. Detailed analysis of a buffered locus found that a nonfunctional HUA2 allele decouples days to flowering and rosette leaf number in an AGO1-dependent manner, suggesting that the AGO1-dependent buffering acts at the network level.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenotipo , Alelos , Hojas de la Planta/metabolismo , Variación Genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo
19.
Nat Plants ; 8(12): 1453-1466, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36522450

RESUMEN

Chromatin architecture and transcription factor (TF) binding underpin cell-fate specification during development, but their mutual regulatory relationships remain unclear. Here we report an atlas of dynamic chromatin landscapes during stomatal cell-lineage progression, in which sequential cell-state transitions are governed by lineage-specific bHLH TFs. Major reprogramming of chromatin accessibility occurs at the proliferation-to-differentiation transition. We discover novel co-cis regulatory elements (CREs) signifying the early precursor stage, BBR/BPC (GAGA) and bHLH (E-box) motifs, where master-regulatory bHLH TFs, SPEECHLESS and MUTE, consecutively bind to initiate and terminate the proliferative state, respectively. BPC TFs complex with MUTE to repress SPEECHLESS expression through a local deposition of repressive histone marks. We elucidate the mechanism by which cell-state-specific heterotypic TF complexes facilitate cell-fate commitment by recruiting chromatin modifiers via key co-CREs.


Asunto(s)
Cromatina , Transactivadores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular
20.
Trends Genet ; 38(6): 587-597, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35272860

RESUMEN

With the advent of long-read sequencing, previously unresolvable genomic elements are being revisited in an effort to generate fully complete reference genomes. One such element is ribosomal DNA (rDNA), the highly conserved genomic region that encodes rRNAs. Genomic structure and content of the rDNA are variable in both prokarya and eukarya, posing interesting questions about the biology of rDNA. Here, we consider the types of variation observed in rDNA - including locus structure and number, copy number, and sequence variation - and their known phenotypic consequences. With recent advances in long-read sequencing technology, incorporating the full rDNA sequence into reference genomes is within reach. This knowledge will have important implications for understanding rDNA biology within the context of cell physiology and whole-organism phenotypes.


Asunto(s)
Genómica , ARN Ribosómico , ADN Ribosómico/genética , Eucariontes/genética , ARN Ribosómico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA