Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34884870

RESUMEN

The parasite species of genus Plasmodium causes Malaria, which remains a major global health problem due to parasite resistance to available Antimalarial drugs and increasing treatment costs. Consequently, computational prediction of new Antimalarial compounds with novel targets in the proteome of Plasmodium sp. is a very important goal for the pharmaceutical industry. We can expect that the success of the pre-clinical assay depends on the conditions of assay per se, the chemical structure of the drug, the structure of the target protein to be targeted, as well as on factors governing the expression of this protein in the proteome such as genes (Deoxyribonucleic acid, DNA) sequence and/or chromosomes structure. However, there are no reports of computational models that consider all these factors simultaneously. Some of the difficulties for this kind of analysis are the dispersion of data in different datasets, the high heterogeneity of data, etc. In this work, we analyzed three databases ChEMBL (Chemical database of the European Molecular Biology Laboratory), UniProt (Universal Protein Resource), and NCBI-GDV (National Center for Biotechnology Information-Genome Data Viewer) to achieve this goal. The ChEMBL dataset contains outcomes for 17,758 unique assays of potential Antimalarial compounds including numeric descriptors (variables) for the structure of compounds as well as a huge amount of information about the conditions of assays. The NCBI-GDV and UniProt datasets include the sequence of genes, proteins, and their functions. In addition, we also created two partitions (cassayj = caj and cdataj = cdj) of categorical variables from theChEMBL dataset. These partitions contain variables that encode information about experimental conditions of preclinical assays (caj) or about the nature and quality of data (cdj). These categorical variables include information about 22 parameters of biological activity (ca0), 28 target proteins (ca1), and 9 organisms of assay (ca2), etc. We also created another partition of (cprotj = cpj) including categorical variables with biological information about the target proteins, genes, and chromosomes. These variables cover32 genes (cp0), 10 chromosomes (cp1), gene orientation (cp2), and 31 protein functions (cp3). We used a Perturbation-Theory Machine Learning Information Fusion (IFPTML) algorithm to map all this information (from three databases) into and train a predictive model. Shannon's entropy measure Shk (numerical variables) was used to quantify the information about the structure of drugs, protein sequences, gene sequences, and chromosomes in the same information scale. Perturbation Theory Operators (PTOs) with the form of Moving Average (MA) operators have been used to quantify perturbations (deviations) in the structural variables with respect to their expected values for different subsets (partitions) of categorical variables. We obtained three IFPTML models using General Discriminant Analysis (GDA), Classification Tree with Univariate Splits (CTUS), and Classification Tree with Linear Combinations (CTLC). The IFPTML-CTLC presented the better performance with Sensitivity Sn(%) = 83.6/85.1, and Specificity Sp(%) = 89.8/89.7 for training/validation sets, respectively. This model could become a useful tool for the optimization of preclinical assays of new Antimalarial compounds vs. different proteins in the proteome of Plasmodium.


Asunto(s)
Antimaláricos/farmacología , Descubrimiento de Drogas/métodos , Aprendizaje Automático , Plasmodium falciparum/genética , Algoritmos , Antimaláricos/química , Bases de Datos Farmacéuticas , Evaluación Preclínica de Medicamentos , Genoma de Protozoos , Cadenas de Markov , Modelos Teóricos , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Reproducibilidad de los Resultados
2.
Eur J Med Chem ; 220: 113458, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-33901901

RESUMEN

The development of new molecules for the treatment of leishmaniasis is, a neglected parasitic disease, is urgent as current anti-leishmanial therapeutics are hampered by drug toxicity and resistance. The pyrrolo[1,2-b]isoquinoline core was selected as starting point, and palladium-catalyzed Heck-initiated cascade reactions were developed for the synthesis of a series of C-10 substituted derivatives. Their in vitro leishmanicidal activity against visceral (L. donovani) and cutaneous (L. amazonensis) leishmaniasis was evaluated. The best activity was found, in general, for the 10-arylmethyl substituted pyrroloisoquinolines. In particular, 2ad (IC50 = 3.30 µM, SI > 77.01) and 2bb (IC50 = 3.93 µM, SI > 58.77) were approximately 10-fold more potent and selective than the drug of reference (miltefosine), against L. amazonensis on in vitro promastigote assays, while 2ae was the more active compound in the in vitro amastigote assays (IC50 = 33.59 µM, SI > 8.93). Notably, almost all compounds showed low cytotoxicity, CC50 > 100 µg/mL in J774 cells, highest tested dose. In addition, we have developed the first Perturbation Theory Machine Learning (PTML) algorithm able to predict simultaneously multiple biological activity parameters (IC50, Ki, etc.) vs. any Leishmania species and target protein, with high values of specificity (>98%) and sensitivity (>90%) in both training and validation series. Therefore, this model may be useful to reduce time and assay costs (material and human resources) in the drug discovery process.


Asunto(s)
Antiprotozoarios/farmacología , Isoquinolinas/farmacología , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Paladio/química , Algoritmos , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Relación Dosis-Respuesta a Droga , Isoquinolinas/síntesis química , Isoquinolinas/química , Leishmaniasis/parasitología , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad
3.
Curr Top Med Chem ; 20(25): 2326-2337, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32938352

RESUMEN

By combining Machine Learning (ML) methods with Perturbation Theory (PT), it is possible to develop predictive models for a variety of response targets. Such combination often known as Perturbation Theory Machine Learning (PTML) modeling comprises a set of techniques that can handle various physical, and chemical properties of different organisms, complex biological or material systems under multiple input conditions. In so doing, these techniques effectively integrate a manifold of diverse chemical and biological data into a single computational framework that can then be applied for screening lead chemicals as well as to find clues for improving the targeted response(s). PTML models have thus been extremely helpful in drug or material design efforts and found to be predictive and applicable across a broad space of systems. After a brief outline of the applied methodology, this work reviews the different uses of PTML in Medicinal Chemistry, as well as in other applications. Finally, we cover the development of software available nowadays for setting up PTML models from large datasets.


Asunto(s)
Bases de Datos de Compuestos Químicos , Aprendizaje Automático , Programas Informáticos , Química Farmacéutica , Modelos Moleculares
4.
Biology (Basel) ; 9(8)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751710

RESUMEN

Drug-decorated nanoparticles (DDNPs) have important medical applications. The current work combined Perturbation Theory with Machine Learning and Information Fusion (PTMLIF). Thus, PTMLIF models were proposed to predict the probability of nanoparticle-compound/drug complexes having antimalarial activity (against Plasmodium). The aim is to save experimental resources and time by using a virtual screening for DDNPs. The raw data was obtained by the fusion of experimental data for nanoparticles with compound chemical assays from the ChEMBL database. The inputs for the eight Machine Learning classifiers were transformed features of drugs/compounds and nanoparticles as perturbations of molecular descriptors in specific experimental conditions (experiment-centered features). The resulting dataset contains 107 input features and 249,992 examples. The best classification model was provided by Random Forest, with 27 selected features of drugs/compounds and nanoparticles in all experimental conditions considered. The high performance of the model was demonstrated by the mean Area Under the Receiver Operating Characteristics (AUC) in a test subset with a value of 0.9921 ± 0.000244 (10-fold cross-validation). The results demonstrated the power of information fusion of the experimental-centered features of drugs/compounds and nanoparticles for the prediction of nanoparticle-compound antimalarial activity. The scripts and dataset for this project are available in the open GitHub repository.

5.
J Proteome Res ; 17(3): 1258-1268, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29336158

RESUMEN

The spatial distribution of genes in chromosomes seems not to be random. For instance, only 10% of genes are transcribed from bidirectional promoters in humans, and many more are organized into larger clusters. This raises intriguing questions previously asked by different authors. We would like to add a few more questions in this context, related to gene orientation inversions. Does gene orientation (inversion) follow a random pattern? Is it relevant to biological activity somehow? We define a new kind of network coined as the gene orientation inversion network (GOIN). GOIN's complex network encodes short- and long-range patterns of inversion of the orientation of pairs of gene in the chromosome. We selected Plasmodium falciparum as a case of study due to the high relevance of this parasite to public health (causal agent of malaria). We constructed here for the first time all of the GOINs for the genome of this parasite. These networks have an average of 383 nodes (genes in one chromosome) and 1314 links (pairs of gene with inverse orientation). We calculated node centralities and other parameters of these networks. These numerical parameters were used to study different properties of gene inversion patterns, for example, distribution, local communities, similarity to Erdös-Rényi random networks, randomness, and so on. We find clues that seem to indicate that gene orientation inversion does not follow a random pattern. We noted that some gene communities in the GOINs tend to group genes encoding for RIFIN-related proteins in the proteome of the parasite. RIFIN-like proteins are a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Consequently, we used these centralities as input of machine learning (ML) models to predict the RIFIN-like activity of 5365 proteins in the proteome of Plasmodium sp. The best linear ML model found discriminates RIFIN-like from other proteins with sensitivity and specificity 70-80% in training and external validation series. All of these results may point to a possible biological relevance of gene orientation inversion not directly dependent on genetic sequence information. This work opens the gate to the use of GOINs as a tool for the study of the structure of chromosomes and the study of protein function in proteome research.


Asunto(s)
Cromosomas/química , Redes Reguladoras de Genes , Genes Protozoarios , Proteínas de la Membrana/genética , Plasmodium falciparum/genética , Proteoma/genética , Proteínas Protozoarias/genética , Inversión de Secuencia , Eritrocitos/parasitología , Regulación de la Expresión Génica , Humanos , Aprendizaje Automático , Proteínas de la Membrana/metabolismo , Familia de Multigenes , Plasmodium falciparum/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA