Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Environ Monit Assess ; 196(7): 599, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844615

RESUMEN

This research was carried out in order to assess a baseline occurrence in Biscayne National Park, Florida, of four organic contaminants: the UV filters oxybenzone, dioxybenzone, and benzophenone, as well as the topical pain reliever benzocaine. A total of 35 samples were taken from five locations within the park, four near barrier islands, and one at a coral reef. Analyses were carried out using liquid chromatography coupled to high-resolution mass spectrometry. Oxybenzone was detected in 26% of samples from the park at concentrations up to 31 ng/L. Benzophenone was detected in 49% of samples from the park at concentrations up to 131 ng/L. Benzocaine and dioxybenzone were not detected in any of the samples.


Asunto(s)
Benzofenonas , Monitoreo del Ambiente , Parques Recreativos , Protectores Solares , Contaminantes Químicos del Agua , Florida , Benzofenonas/análisis , Contaminantes Químicos del Agua/análisis , Protectores Solares/análisis , Benzocaína/análisis
2.
Animals (Basel) ; 14(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791705

RESUMEN

There is growing concern about the potential adverse health effects of phthalates (PAEs) on human health and the environment due to their extensive use as plasticizers and additives in commercial and consumer products. In this study, we assessed PAE concentrations in serum samples from aquarium-based delphinids (Tursiops truncatus, n = 36; Orcinus orca, n = 42) from California, Florida, and Texas, USA. To better understand the physiological effects of phthalates on delphinids, we also explored potential correlations between phthalates and the biomarkers aldosterone, cortisol, corticosterone, hydrogen peroxide, and malondialdehyde while accounting for sex, age, and reproductive stage. All PAEs were detected in at least one of the individuals. ΣPAE ranges were 5.995-2743 ng·mL-1 in bottlenose dolphins and 5.372-88,675 ng·mL-1 in killer whales. Both species displayed higher mean concentrations of DEP and DEHP. PAEs were detected in newborn delphinids, indicating transference via placenta and/or lactation. Linear mixed model results indicated significant correlations between aldosterone, month, location, status, and ΣPAEs in killer whales, suggesting that aldosterone concentrations are likely affected by the cumulative effects of these variables. This study expands on the knowledge of delphinid physiological responses to PAEs and may influence management and conservation decisions on contamination discharge regulations near these species.

3.
J Hazard Mater ; 469: 134025, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38492398

RESUMEN

Environmental contamination through direct contact, ingestion and inhalation are common routes of children's exposure to chemicals, in which through indoor and outdoor activities associated with common hand-to-mouth, touching objects, and behavioral tendencies, children can be susceptible and vulnerable to organic contaminants in the environment. The objectives of this study were the screening and identification of a wide range of organic contaminants in indoor dust, soil, food, drinking water, and urine matrices (N = 439), prioritizing chemicals to assess children's environmental exposure, and selection of unique tracers of soil and dust ingestion in young children by non-targeted analysis (NTA) using Q-Exactive Orbitrap followed data processing by the Compound Discoverer (v3.3, SP2). Chemical features were first prioritized based on their predominant abundance (peak area>500,000), detection frequency (in >50% of the samples), available information on their uses and potential toxicological effects. Specific tracers of soil and dust exposure in children were selected in this study including Tripropyl citrate and 4-Dodecylbenzenesulfonic acid. The criteria for selection of the tracers were based on their higher abundance, detection frequency, unique functional uses, measurable amounts in urine (suitable biomarker), and with information on gastrointestinal absorption, metabolism, and excretion, and were further confirmed by authentic standards. We are proposing for the first time suitable unique tracers for dust ingestion by children.


Asunto(s)
Contaminación del Aire Interior , Suelo , Niño , Humanos , Preescolar , Suelo/química , Exposición a Riesgos Ambientales/análisis , Compuestos Orgánicos/análisis , Espectrometría de Masas , Polvo/análisis , Contaminación del Aire Interior/análisis
4.
Environ Sci Technol ; 58(5): 2468-2478, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38252456

RESUMEN

Wastewater is a source for many contaminants of emerging concern (CECs), and surface waters receiving wastewater discharge often serve as source water for downstream drinking water treatment plants. Nontargeted analysis and suspect screening methods were used to characterize chemicals in residence-time-weighted grab samples and companion polar organic chemical integrative samplers (POCIS) collected on three separate hydrologic sampling events along a surface water flow path representative of de facto water reuse. The goal of this work was to examine the fate of CECs along the study flow path as water is transported from wastewater effluent through drinking water treatment. Grab and POCIS samples provided a comparison between residence-time-weighted single-point and integrative sample results. This unique and rigorous study design, coupled with advanced analytical chemistry tools, provided important insights into chemicals found in drinking water and their potential sources, which can be used to help prioritize chemicals for further study. K-means clustering analysis was used to identify patterns in chemical occurrences across both sampling sites and sampling events. Chemical features that occurred frequently or survived drinking water treatment were prioritized for identification, resulting in the probable identification of over 100 CECs in the watershed and 28 CECs in treated drinking water.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Agua Potable/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Compuestos Orgánicos/análisis
6.
Artículo en Inglés | MEDLINE | ID: mdl-37510576

RESUMEN

Organochlorine pesticides (OCP) are legacy anthropogenic compounds known to persist for several years in the environment. The continuous use of some OCP, such as DDT, after restrictions in developing countries are cause of concern, due to their deleterious effects to marine life and humans. Studies assessing OCP contamination in coastal environments are still scarce in South America and there is a need to understand the impacts from trophic chain accumulation of these pollutants in marine life. In this study, we have assessed OCP levels in muscle and liver and estimated the biomagnification factor in several upwelling system trophic chain members, including fish, squid, and marine mammal from Southeastern Brazil. DDT degradation product DDE was the OCP detected in the highest concentrations in Franciscana dolphins (Pontoporia blainvillei), 86.4 ng·g-1 wet weight, and fish muscle and liver. In general, higher OCP levels were found in liver than in muscle, except for croaker. Biomagnification factors (BMF) of OCP in the top predator P. blainvillei and the carnivorous cutlass fish (Trichiurus lepturus) were on average between 0.2 and 1.8. Continued OCP monitoring in this region is warranted to better understand the distribution and fate of these compounds over time, with the goal to establish strategies for the conservation of local dolphin species and to assess human health risks from local coastal region populations.


Asunto(s)
Delfines , Hidrocarburos Clorados , Perciformes , Plaguicidas , Contaminantes Químicos del Agua , Animales , Humanos , DDT , Brasil , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Delfines/metabolismo , Peces/metabolismo , Perciformes/metabolismo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
7.
Artículo en Inglés | MEDLINE | ID: mdl-37444085

RESUMEN

Cortisol is the main glucocorticoid released during stress responses in most fish and has been employed to investigate different stressors, including organic pollutants. This review discusses shifts in cortisol concentrations and examines different matrix sampling methods (invasive vs. minimally or non-invasive) and the main analytical cortisol determination techniques (immunoassays and liquid chromatography-tandem mass spectrometry). Assessments on organic pollutant exposure in fish and associated adverse effects are also discussed. Studies in this regard may aid in identifying organic pollutant toxicological modes of action, mechanistic response, toxicokinetics, and toxicodynamics, as well as pollution sources and associated health risks in fish, ultimately aiding in the development of effective management strategies to mitigate the impacts of organic pollutants on fish populations and their associated ecosystems.


Asunto(s)
Contaminantes Ambientales , Hidrocortisona , Animales , Hidrocortisona/análisis , Contaminantes Ambientales/análisis , Ecosistema , Glucocorticoides , Peces
8.
Environ Pollut ; 329: 121705, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116565

RESUMEN

Per and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals characterized by their ubiquitous nature in all environmental compartments which makes them of increasing concern due to their persistence, bioaccumulation, and toxicity (PBT). Several instrumental methodologies and separation techniques have been identified in the literature for the detection and quantification of PFAS in environmental samples. In this review, we have identified and compared common separation techniques adopted for the extraction of PFAS in food items, and analytical methodologies for identification and quantification of PFAS in food items of plant and animal origin, highlighting recent advances in tandem techniques for the high selectivity and separation of PFAS related compounds as well as knowledge gaps and research needs on current analytical methodologies.


Asunto(s)
Fluorocarburos , Alimentos , Animales , Bioacumulación
9.
J Expo Sci Environ Epidemiol ; 33(4): 589-601, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37120701

RESUMEN

BACKGROUND: Children are vulnerable to environmental exposure of contaminants due to their small size, lack of judgement skills, as well as their proximity to dust, soil, and other environmental sources. A better understanding about the types of contaminants that children are exposed to or how their bodies retain or process these compounds is needed. OBJECTIVE: In this study, we have implemented and optimized a methodology based on non-targeted analysis (NTA) to characterize chemicals in dust, soil, urine, and in the diet (food and drinking water) of infant populations. METHODS: To evaluate potential toxicological concerns associated with chemical exposure, families with children between 6 months and 6 years of age from underrepresented groups were recruited in the greater Miami area. Samples of soil, indoor dust, food, water, and urine were provided by the caregivers, prepared by different techniques (involving online SPE, ASE, USE, QuEChERs), and analyzed by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Data post-processing was performed using the small molecule structure identification software, Compound Discoverer (CD) 3.3, and identified features were plotted using Kendrick mass defect plot and Van Krevelen diagrams to show unique patterns in different samples and regions of anthropogenic compound classifications. RESULTS: The performance of the NTA workflow was evaluated using quality control standards in terms of accuracy, precision, selectivity, and sensitivity, with an average of 98.2%, 20.3%, 98.4% and 71.1%, respectively. Sample preparation was successfully optimized for soil, dust, water, food, and urine. A total of 30, 78, 103, 20 and 265 annotated features were frequently identified (detection frequency >80%) in the food, dust, soil, water, and urine samples, respectively. Common features detected in each matrix were prioritized and classified, providing insight on children's exposure to organic contaminants of concern and their potential toxicities. IMPACT STATEMENT: Current methods to assess the ingestion of chemicals by children have limitations and are generally restricted by specific classes of targeted organic contaminants of interest. This study offers an innovative approach using non-targeted analysis for the comprehensive screening of organic contaminants that children are exposed to through dust, soil, and diet (drinking water and food).


Asunto(s)
Agua Potable , Niño , Humanos , Agua Potable/análisis , Exposición a Riesgos Ambientales/análisis , Suelo/química , Espectrometría de Masas , Polvo/análisis
10.
J Hazard Mater ; 452: 131224, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36948119

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a group of anthropogenic pollutants that are found ubiquitously in surface and drinking water supplies. Due to their persistent nature, bioaccumulative potential, and significant adverse health effects associated with low concentrations, they pose a concern for human and environmental exposure. With the advances in high-resolution mass spectrometry (HRMS) methods, there has been an increasing number of non-targeted analysis (NTA) approaches that allow for a more comprehensive characterization of total PFAS present in environmental samples. In this study, we have developed and compared NTA workflows based on an online solid phase extraction- liquid chromatography high resolution mass spectrometry (online SPE-LC-HRMS) method followed by data processing using Compound Discoverer and FluoroMatch for the screening of PFAS in drinking waters from populated counties in South Florida, as well as in surface waters from Biscayne Bay, Key west, and Everglades canals. Tap water showed the highest number of PFAS features, indicating a poor removal of these chemicals by water treatment or perhaps the breakdown of PFAS precursors. The high number of PFAS features identified only by CD and FluoroMatch emphasizes the complementary aspects of these data processing methods. A Semi-quantitation method for NTA (qNTA) was proposed using a global calibration curve based on existing native standards and internal standards, in which concentration estimates were determined by a regression-based model and internal standard (IS) response factors. NTA play a crucial role in the identification and prioritization of non-traditionally monitored PFAS, needed for the understanding of the toxicological and environmental impact, which are largely underestimated due to the lack of such information for many PFAS.


Asunto(s)
Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Florida , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua , Exposición a Riesgos Ambientales/análisis , Fluorocarburos/análisis , Agua Potable/análisis
11.
Anal Bioanal Chem ; 415(1): 35-44, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36435841

RESUMEN

Non-targeted analysis (NTA) using high-resolution mass spectrometry allows scientists to detect and identify a broad range of compounds in diverse matrices for monitoring exposure and toxicological evaluation without a priori chemical knowledge. NTA methods present an opportunity to describe the constituents of a sample across a multidimensional swath of chemical properties, referred to as "chemical space." Understanding and communicating which region of chemical space is extractable and detectable by an NTA workflow, however, remains challenging and non-standardized. For example, many sample processing and data analysis steps influence the types of chemicals that can be detected and identified. Accordingly, it is challenging to assess whether analyte non-detection in an NTA study indicates true absence in a sample (above a detection limit) or is a false negative driven by workflow limitations. Here, we describe the need for accessible approaches that enable chemical space mapping in NTA studies, propose a tool to address this need, and highlight the different ways in which it could be implemented in NTA workflows. We identify a suite of existing predictive and analytical tools that can be used in combination to generate scores that describe the likelihood a compound will be detected and identified by a given NTA workflow based on the predicted chemical space of that workflow. Higher scores correspond to a higher likelihood of compound detection and identification in a given workflow (based on sample extraction, data acquisition, and data analysis parameters). Lower scores indicate a lower probability of detection, even if the compound is truly present in the samples of interest. Understanding the constraints of NTA workflows can be useful for stakeholders when results from NTA studies are used in real-world applications and for NTA researchers working to improve their workflow performance. The hypothetical ChemSpaceTool suggested herein could be used in both a prospective and retrospective sense. Prospectively, the tool can be used to further curate screening libraries and set identification thresholds. Retrospectively, false detections can be filtered by the plausibility of the compound identification by the selected NTA method, increasing the confidence of unknown identifications. Lastly, this work highlights the chemometric needs to make such a tool robust and usable across a wide range of NTA disciplines and invites others who are working on various models to participate in the development of the ChemSpaceTool. Ultimately, the development of a chemical space mapping tool strives to enable further standardization of NTA by improving method transparency and communication around false detection rates, thus allowing for more direct method comparisons between studies and improved reproducibility. This, in turn, is expected to promote further widespread applications of NTA beyond research-oriented settings.


Asunto(s)
Estudios Retrospectivos , Reproducibilidad de los Resultados , Estudios Prospectivos , Espectrometría de Masas/métodos , Estándares de Referencia
12.
Artículo en Inglés | MEDLINE | ID: mdl-35897351

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are ever-present pollutants in the environment. They are persistent and bio-accumulative with deleterious health effects on biota. This study assesses the levels of PFAS in environmental matrices along the Nairobi River, Kenya. An aggregate of 30 PFAS were determined in water, while 28 PFAS were detected in sediments and plants using solid phase extraction then liquid chromatography-mass spectrometric techniques. In water, higher levels of perfluoroundecanoic acids of up to 39.2 ng L-1 were observed. Sediment and plant samples obtained in the midstream and downstream contained higher levels of perfluorooctanoic acid of up to 39.62 and 29.33 ng g-1, respectively. Comparably, levels of long-chain PFAS were higher in water and sediments than in plants. Sediment/water log distribution of selected PFAS ranged between 2.5 (perfluoroundecanoic acid) and 4.9 (perfluorooctane sulfonate). The level of perfluorooctane sulfonate (1.83 ng L-1) in water is above the acceptable level in surface water posing high human health and ecological risks. The observed PFAS concentrations and distribution were attributed mainly to multi-industries located along the river, among other sources. The knowledge of PFAS occurrence and distribution in Nairobi River, Kenya, provides important information to local regulatory agencies for PFAS pollution control.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , Monitoreo del Ambiente , Fluorocarburos/análisis , Humanos , Kenia , Agua/análisis , Contaminantes Químicos del Agua/análisis
13.
Environ Sci Pollut Res Int ; 29(56): 84383-84395, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35780268

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are notoriously persistent pollutants that are found ubiquitously present in aquatic environments. They pose a big threat to aquatic life and human health given the bioaccumulation feature and significant adverse health effects associated. In our previous study, PFAS were found in surface waters from Biscayne Bay and tap waters from the East coast of South Florida, at levels that arouse human health and ecological concerns. Considering that Florida supports millions population as well as treasured, sensitive coastal and wetland ecosystems, we have expanded the PFAS monitoring study on the occurrence, composition, spatial distribution, and potential sources encompassing tap waters from counties on the West coast of South Florida and Central Florida, and surface waters from Tampa Bay, Everglades National Park adjacent canals, Key West, including Biscayne Bay area. A total of 30 PFAS were analyzed based on solid-phase extraction (SPE) followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). PFAS were detected in all tap water (N = 10) and surface water samples (N = 38) with total concentrations up to 169 ng L-1. Higher PFAS concentrations (> 60 ng L-1) are mostly observed from polluted rivers or coastal estuaries in Biscayne Bay, and sites nearby potential points sources (military airbases, wastewater facilities, airports, etc.). Our findings on current PFAS contamination levels from diverse aquatic environments provide additional information for the development of more stringent screening levels that are protective of human health and the environmental resources of Florida, which is ultimately anticipated as scientific understanding of PFAS is rapidly growing.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Fluorocarburos/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Ecosistema , Cromatografía Liquida , Florida , Espectrometría de Masas en Tándem , Agua/análisis
14.
Mar Pollut Bull ; 180: 113802, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35665653

RESUMEN

In this research, we have developed and validated a modified version of the U.S.EPA method 506 using a liquid-liquid extraction method followed by gas-chromatography mass spectrometry analysis to assess the occurrence and spatial and seasonal variation of six phthalates (di(2-ethylhexyl) phthalate-DEHP, dibutyl phthalate-DBP, butyl benzyl phthalate-BBP, diethyl phthalate-DEP, dimethyl phthalate-DMP, and di-n-octyl phthalate-DOP) in surface and tap waters from South Florida, collected during the wet and dry seasons. The most frequently detected phthalate was DEHP, with concentrations up to 1.56 µg/L in surface water. Higher DEHP concentrations were observed in tap water during the wet season, which aligns with the higher temperature during the summer months facilitating leaching from plastic materials. Preliminary ecological and human health risk assessments suggested low hazard risk based on concentrations observed in tap and surface waters, respectively. PAEs could however still constitute a great concern to sensitive marine species, including early stages organisms and coral reefs.


Asunto(s)
Dietilhexil Ftalato , Agua Potable , Ácidos Ftálicos , Bahías , Dibutil Ftalato/análisis , Dietilhexil Ftalato/análisis , Agua Potable/análisis , Agua Potable/química , Ésteres/análisis , Florida , Ácidos Ftálicos/análisis
15.
J Vis Exp ; (183)2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35635461

RESUMEN

Cells are continually exposed to agents arising from the internal and external environments, which may damage DNA. This damage can cause aberrant cell function, and therefore DNA damage may play a critical role in the development of, conceivably, all major human diseases, e.g., cancer, neurodegenerative and cardiovascular disease, and aging. Single-cell gel electrophoresis (i.e., the comet assay) is one of the most common and sensitive methods to study the formation and repair of a wide range of types of DNA damage (e.g., single- and double-strand breaks, alkali-labile sites, DNA-DNA crosslinks, and, in combination with certain repair enzymes, oxidized purines, and pyrimidines), in both in vitro and in vivo systems. However, the low sample throughput of the conventional assay and laborious sample workup are limiting factors to its widest possible application. With the "scoring" of comets increasingly automated, the limitation is now the ability to process significant numbers of comet slides. Here, a high-throughput (HTP) variant of the comet assay (HTP comet assay) has been developed, which significantly increases the number of samples analyzed, decreases assay run time, the number of individual slide manipulations, reagent requirements, and risk of physical damage to the gels. Furthermore, the footprint of the electrophoresis tank is significantly decreased due to the vertical orientation of the slides and integral cooling. Also reported here is a novel approach to chilling comet assay slides, which conveniently and efficiently facilitates the solidification of the comet gels. Here, the application of these devices to representative comet assay methods has been described. These simple innovations greatly support the use of the comet assay and its application to areas of study such as exposure biology, ecotoxicology, biomonitoring, toxicity screening/testing, together with understanding pathogenesis.


Asunto(s)
Daño del ADN , Reparación del ADN , Ensayo Cometa/métodos , ADN/análisis , Humanos , Pruebas de Toxicidad
16.
Sci Total Environ ; 835: 155316, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35447178

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) and phthalate esters (PAEs) are emerging contaminants of higher concern due to their wide industrial and commercial use, toxicity, and potential adverse health effects. In this study, we assessed PFAS and PAEs exposure in American oysters collected in three study sites in Florida, USA. Potential physiological effects of these contaminants were assessed by collecting oyster biometric data, calculating condition indices, and assessing oxidative stress levels in these individuals. Finally, a human health risk assessment was conducted based on the concentrations found in the consumable Tampa Bay (TB) oysters. All PFAS and PAEs compounds assessed in this study were detected in at least one oyster in all study sites. Among all locations, ΣPFAS concentration range was 0.611-134.78 ng·g-1 and ΣPAEs <0.328-1021 ng·g-1. Despite the smaller size of Biscayne Bay (BB) oysters, they displayed the highest concentrations of most of the PFAS and PAEs compounds, which is likely associated with population size, and other sources in the area. Condition index (CI) III was smaller in BB oysters, likely indicating a stressed population. Even though BB oysters were the most affected individuals, Marco Island (MI) oysters displayed the highest levels of lipid peroxidation, which can also be associated with environmental factors and decreased food availability. Conversely, TB oysters exhibited the highest levels of hydrogen peroxide, likely indicating a better defense mechanism in TB oysters compared to MI oysters. The human health risk assessment for TB oysters indicated low risk from PFAS and PAEs exposure, but there is no reference dose for other compounds and the human diet is wider than only oysters. Therefore, the risk of contaminant exposure is likely higher. This study demonstrates the value of integrating data on contaminant exposure and physiological responses of bioindicator specimens to better understand how emerging contaminants are affecting marine wildlife.


Asunto(s)
Crassostrea , Fluorocarburos , Animales , Biomarcadores Ambientales , Florida , Fluorocarburos/análisis , Humanos
17.
Water Res ; 213: 118146, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167965

RESUMEN

Carbon adsorbent fouling by dissolved organic matter (DOM) inhibits the ability of the widely-used rapid small-scale column test (RSSCT) to accurately predict the removal of organic micropollutants (OMP) from water by full-scale carbon adsorbers. Here, the adsorption of 11 short-chain per-/poly-fluoroalkyl substances (PFAS) from groundwater, surface water, and wastewater was examined in pilot columns as well as RSSCTs using constant diffusivity (CD) and proportional diffusivity (PD) designs. Neither the CD- or PD-RSSCT accurately predicted pilot adsorber breakthrough of PFAS using standard diffusional mass transfer models. However, PFAS breakthrough relative to optical property (e.g., peak C, UV absorbance at 254 nm) breakthrough remained constant between pilot column, CD-RSSCT, and PD-RSSCT designs. This finding permitted accurate breakthrough predictions for the sum of PFAS and for 9 of the 11 PFAS on an individual basis in pilot columns using RSSCTs. Multiple linear regressions incorporating influent and treated water optical parameters enabled the modeling approach to be applied to water sources with heterogeneous DOM characteristics. It is hypothesized that this methodology was successful because (i) optical parameters adequately quantified the competitive nature of DOM and their adsorption behaved similar to OMP and (ii) competitive adsorption by low-molecular weight DOM was the predominant fouling mechanism. An OMP monitoring approach was developed for waters containing DOM with heterogenous characteristics that also relied on raw and treated water optical properties. UVA254 and fluorescence monitoring could therefore enable water treatment to remove PFAS in a variety of scenarios that face inhibitory cost and analytical limitations, such as decentralized and low-resource settings.

18.
Drug Test Anal ; 14(6): 1116-1129, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35128825

RESUMEN

Valerylfentanyl, a novel synthetic opioid less potent than fentanyl, has been reported in biological samples, but there are limited studies on its pharmacokinetic properties. The goal of this study was to elucidate the metabolism of valerylfentanyl using an in vitro human liver microsome (HLM) model compared with an in vivo zebrafish model. Nineteen metabolites were detected with N-dealkylation-valeryl norfentanyl and hydroxylation as the major metabolic pathways. The major metabolites in HLMs were also detected in 30 day postfertilization zebrafish. An authentic liver specimen that tested positive for valerylfentanyl, among other opioids and stimulants, revealed the presence of a metabolite that shared transitions and retention time as the hydroxylated metabolite of valerylfentanyl but could not be confirmed without an authentic standard. 4-Anilino-N-phenethylpiperidine (4-ANPP), a common metabolite to other fentanyl analogs, was also detected. In this study, we elucidated the metabolic pathway of valerylfentanyl, confirmed two metabolites using standards, and demonstrated that the zebrafish model produced similar metabolites to the HLM model for opioids.


Asunto(s)
Analgésicos Opioides , Microsomas Hepáticos , Analgésicos Opioides/metabolismo , Animales , Fentanilo , Humanos , Larva/metabolismo , Microsomas Hepáticos/metabolismo , Pez Cebra/metabolismo
19.
Sci Total Environ ; 806(Pt 1): 150393, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34562756

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are persistent anthropogenic pollutants present in many environmental media worldwide due to their extensive uses in many industrial and commercial products combined with their high thermal and chemical stabilities. Its ubiquitous presence in surface and drinking water supply and significant adverse health effects observed in wildlife and humans, associated with its bioaccumulation potential, pose big concerns. In this study, we have developed and validated a semi-automated solid phase extraction (SPE) followed by liquid chromatography-mass spectrometry (LC-MS/MS) for the determination of legacy and emerging short-chain PFAS substitutes in surface and tap water at low parts-per-trillion (ppt) levels in South Florida environments. Surface waters from Biscayne Bay and adjacent canals (n = 15) and tap waters from different counties (Miami-Dade, Broward, and Palm Beach County) (n = 21) were collected between October 2020 (wet season) and February 2021 (dry season). Total PFAS concentrations up to 242 ng L-1 (average of 168 ng L-1) were found in tap water from Grapeland Heights, which is the closest location to the Miami international airport that was sampled. The highest average total PFAS level of 106 ng L-1 was observed in surface water from the Biscayne Canal C-8 for the wet and dry season. In general, average total PFAS was higher in tap water (86.3 ng L-1) than in surface waters (46.3 ng L-1), whereas the most predominant and frequently detected PFAS were PFBA, PFBS, PFPeA, PFHxA, PFHxS, PFOA and PFOS. PFAS levels found could represent a high human health risk, and ecological risk based on PFOS levels above recommended thresholds are also noted. Such knowledge on PFAS occurrence, distribution and sources in South Florida will provide essential information for local and regional regulatory agencies related to water quality, further facilitating the development of guidelines and procedures for PFAS pollution control and reduction in Florida.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , Bahías , Cromatografía Liquida , Monitoreo del Ambiente , Florida , Fluorocarburos/análisis , Humanos , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...