Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Mol Ecol ; : e17418, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847182

Human-facilitated introductions of nonnative populations can lead to secondary contact between allopatric lineages, resulting in lineage homogenisation or the formation of stable hybrid zones maintained by reproductive barriers. We investigated patterns of gene flow between the native Sacramento Valley red fox (Vulpes vulpes patwin) and introduced conspecifics of captive-bred origin in California's Central Valley. Considering their recent divergence (20-70 kya), we hypothesised that any observed barriers to gene flow were primarily driven by pre-zygotic (e.g. behavioural differences) rather than post-zygotic (e.g. reduced hybrid fitness) barriers. We also explored whether nonnative genes could confer higher fitness in the human-dominated landscape resulting in selective introgression into the native population. Genetic analysis of red foxes (n = 682) at both mitochondrial (cytochrome b + D-loop) and nuclear (19,051 SNPs) loci revealed narrower cline widths than expected under a simulated model of unrestricted gene flow, consistent with the existence of reproductive barriers. We identified several loci with reduced introgression that were previously linked to behavioural divergence in captive-bred and domestic canids, supporting pre-zygotic, yet possibly hereditary, barriers as a mechanism driving the narrowness and stability of the hybrid zone. Several loci with elevated gene flow from the nonnative into the native population were linked to genes associated with domestication and adaptation to human-dominated landscapes. This study contributes to our understanding of hybridisation dynamics in vertebrates, particularly in the context of species introductions and landscape changes, underscoring the importance of considering how multiple mechanisms may be maintaining lineages at the species and subspecies level.

2.
J Hered ; 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38624218

The first record of captive bred red foxes (Vulpes vulpes) dates to 1896, when a breeding enterprise emerged in the provinces of Atlantic Canada. Because its domestication happened during recent history, the red fox offers a unique opportunity to examine the genetic diversity of an emerging domesticated species in the context of documented historical and economic influences. In particular, the historical record suggests that North American and Eurasian farm-bred populations likely experienced different demographic trajectories. Here, we focus on the likely impacts of founder effects and genetic drift given historical trends in fox farming on North American and Eurasian farms. A total of 15 mitochondrial haplotypes were identified in 369 foxes from 10 farm populations that we genotyped (n=161) or that were previously published. All haplotypes are endemic to North America. Although most haplotypes were consistent with eastern Canadian ancestry, a small number of foxes carried haplotypes typically found in Alaska and other regions of western North America. The presence of these haplotypes supports historical reports of wild foxes outside of Atlantic Canada being introduced into the breeding stock. These putative Alaskan and Western haplotypes were more frequently identified in Eurasian farms compared to North American farms, consistent with historical documentation suggesting that Eurasian economic and breeding practices were likely to maintain low-frequency haplotypes more effectively than in North America. Contextualizing inter- versus intra-farm genetic diversity alongside the historical record is critical to understanding of the origins of this emerging domesticate and the relationships between wild and farm-bred fox populations.

3.
J Mammal ; 104(4): 820-832, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37545667

Carnivores play critical roles in ecosystems, yet many species are declining worldwide. The Sierra Nevada Red Fox (Vulpes vulpes necator; SNRF) is a rare and endangered subspecies of red fox limited to upper montane forests, subalpine, and alpine environments of California and Oregon, United States. Having experienced significant distribution contractions and population declines in the last century, the subspecies is listed as at-risk by relevant federal and state agencies. Updated information on its contemporary distribution and density is needed to guide and evaluate conservation and management actions. We combined 12 years (2009-2020) of detection and nondetection data collected throughout California and Oregon to model the potential distribution and density of SNRFs throughout their historical and contemporary ranges. We used an integrated species distribution and density modeling approach, which predicted SNRF density in sampled locations based on observed relationships between environmental covariates and detection frequencies, and then projected those predictions to unsampled locations based on the estimated correlations with environmental covariates. This approach provided predictions that serve as density estimates in sampled regions and projections in unsampled areas. Our model predicted a density of 1.06 (95% credible interval = 0.8-1.36) foxes per 100 km2 distributed throughout 22,926 km2 in three distinct regions of California and Oregon-Sierra Nevada, Lassen Peak, and Oregon Cascades. SNRFs were most likely to be found in areas with low minimum temperatures and high snow water equivalent. Our results provide a contemporary baseline to inform the development and evaluation of conservation and management actions, and guide future survey efforts.

4.
Heredity (Edinb) ; 129(2): 123-136, 2022 08.
Article En | MEDLINE | ID: mdl-35314789

As anthropogenic disturbances continue to drive habitat loss and range contractions, the maintenance of evolutionary processes will increasingly require targeting measures to the population level, even for common and widespread species. Doing so requires detailed knowledge of population genetic structure, both to identify populations of conservation need and value, as well as to evaluate suitability of potential donor populations. We conducted a range-wide analysis of the genetic structure of red foxes in the contiguous western U.S., including a federally endangered distinct population segment of the Sierra Nevada subspecies, with the objectives of contextualizing field observations of relative scarcity in the Pacific mountains and increasing abundance in the cold desert basins of the Intermountain West. Using 31 autosomal microsatellites, along with mitochondrial and Y-chromosome markers, we found that populations of the Pacific mountains were isolated from one another and genetically depauperate (e.g., estimated Ne range = 3-9). In contrast, red foxes in the Intermountain regions showed relatively high connectivity and genetic diversity. Although most Intermountain red foxes carried indigenous western matrilines (78%) and patrilines (85%), the presence of nonindigenous haplotypes at lower elevations indicated admixture with fur-farm foxes and possibly expanding midcontinent populations as well. Our findings suggest that some Pacific mountain populations could likely benefit from increased connectivity (i.e., genetic rescue) but that nonnative admixture makes expanding populations in the Intermountain basins a non-ideal source. However, our results also suggest contact between Pacific mountain and Intermountain basin populations is likely to increase regardless, warranting consideration of risks and benefits of proactive measures to mitigate against unwanted effects of Intermountain gene flow.


Foxes , Microsatellite Repeats , Animals , Foxes/genetics , Gene Flow , Genetic Markers , Genetic Variation , Haplotypes , United States
5.
Mol Ecol ; 30(17): 4292-4304, 2021 09.
Article En | MEDLINE | ID: mdl-34181791

The red wolf (Canis rufus) of the eastern US was driven to near-extinction by colonial-era persecution and habitat conversion, which facilitated coyote (C. latrans) range expansion and widespread hybridization with red wolves. The observation of some grey wolf (C. lupus) ancestry within red wolves sparked controversy over whether it was historically a subspecies of grey wolf with its predominant "coyote-like" ancestry obtained from post-colonial coyote hybridization (2-species hypothesis) versus a distinct species closely related to the coyote that hybridized with grey wolf (3-species hypothesis). We analysed mitogenomes sourced from before the 20th century bottleneck and coyote invasion, along with hundreds of modern amplicons, which led us to reject the 2-species model and to investigate a broader phylogeographic 3-species model suggested by the fossil record. Our findings broadly support this model, in which red wolves ranged the width of the American continent prior to arrival of the grey wolf to the mid-continent 60-80 ka; red wolves subsequently disappeared from the mid-continent, relegated to California and the eastern forests, which ushered in emergence of the coyote in their place (50-30 ka); by the early Holocene (12-10 ka), coyotes had expanded into California, where they admixed with and phenotypically replaced western red wolves in a process analogous to the 20th century coyote invasion of the eastern forests. Findings indicate that the red wolf pre-dated not only European colonization but human, and possibly coyote, presence in North America. These findings highlight the urgency of expanding conservation efforts for the red wolf.


Coyotes , Wolves , Animals , Coyotes/genetics , Ecosystem , Hybridization, Genetic , Phylogeography , Wolves/genetics
6.
J Hered ; 111(2): 169-181, 2020 04 02.
Article En | MEDLINE | ID: mdl-32161974

The complex topography, climate, and geological history of Western North America have shaped contemporary patterns of biodiversity and species distributions in the region. Pacific martens (Martes caurina) are distributed along the northern Pacific Coast of North America with disjunct populations found throughout the Northwestern Forested Mountains and Marine West Coast Forest ecoregions of the West Coast. Martes in this region have been classified into subspecies; however, the subspecific designation has been extensively debated. In this study, we use genomic data to delineate conservation units of Pacific marten in the Sierra-Cascade-Coastal montane belt in the western United States. We analyzed the mitochondrial genome for 94 individuals to evaluate the spatial distribution and divergence times of major lineages. We further genotyped 401 individuals at 13 microsatellite loci to investigate major patterns of population structure. Both nuclear and mitochondrial DNA suggest substantial genetic substructure concordant with historical subspecies designations. Our results revealed that the region contains 2 distinct mitochondrial lineages: a Cascades/Sierra lineage that diverged from the Cascades/coastal lineage 2.23 (1.48-3.14 mya), consistent with orogeny of the Cascade Mountain chain. Interestingly, Pacific Martes share phylogeographic patterns similar with other sympatric taxa, suggesting that the complex geological history has shaped the biota of this region. The information is critical for conservation and management efforts, and further investigation of adaptive diversity is warranted following appropriate revision of conservation management designations.


Genetics, Population , Genome, Mitochondrial , Mustelidae/genetics , Animals , Conservation of Natural Resources , Evolution, Molecular , Forests , Geology , Microsatellite Repeats , North America , Phylogeny , Phylogeography , Sequence Analysis, DNA
7.
J Hered ; 110(5): 559-576, 2019 08 16.
Article En | MEDLINE | ID: mdl-31002340

Genetic factors in the decline of small populations are extremely difficult to study in nature. We leveraged a natural experiment to investigate evidence of inbreeding depression and genetic rescue in a remnant population of subalpine-specialized Sierra Nevada red foxes (Vulpes vulpes necator) using noninvasive genetic monitoring during 2010-2017. Only 7 individuals were detected in the first 2 years. These individuals assigned genetically to the historical population and exhibited genetic hallmarks of inbreeding and no evidence of reproduction. Two years into the study, we detected 2 first-generation immigrant males from a recently expanding population of red foxes in the Great Basin Desert. Through annual resampling of individuals (634 red fox DNA samples, 41 individuals) and molecular reconstruction of pedigrees, we documented 1-3 litters/year for 5 years, all descended directly or indirectly from matings involving immigrant foxes. The observed heterozygosity and allelic richness of the population nearly doubled in 2 years. Abundance increased, indicative of a rapidly expanding population. Throughout the study, adult survival was high. Restoration of gene flow apparently improved the demographic trajectory of this population in the short term. Whether these benefits continue in the longer term could depend on numerous factors, such as maintenance of any locally adapted alleles. This study highlights the value of noninvasive genetic monitoring to assess rapidly shifting conditions in small populations. Uncertainties about the longer-term trajectory of this population underscore the need to continue monitoring and to research potential for both negative and positive aspects of continued genetic infusion.


Foxes/genetics , Genetics, Population , Animals , DNA, Mitochondrial , Genetic Variation , Geography , Hybridization, Genetic , Inbreeding , Microsatellite Repeats , Pedigree , Reproduction/genetics
...