Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 104
1.
Int J Sports Physiol Perform ; : 1-9, 2024 May 15.
Article En | MEDLINE | ID: mdl-38753297

PURPOSE: Injury prevention is a crucial aspect of sports, particularly in high-performance settings such as elite female football. This study aimed to develop an injury prediction model that incorporates clinical, Global-Positioning-System (GPS), and multiomics (genomics and metabolomics) data to better understand the factors associated with injury in elite female football players. METHODS: We designed a prospective cohort study over 2 seasons (2019-20 and 2021-22) of noncontact injuries in 24 elite female players in the Spanish Premiership competition. We used GPS data to determine external workload, genomic data to capture genetic susceptibility, and metabolomic data to measure internal workload. RESULTS: Forty noncontact injuries were recorded, the most frequent of which were muscle (63%) and ligament (20%) injuries. The baseline risk model included fat mass and the random effect of the player. Six genetic polymorphisms located at the DCN, ADAMTS5, ESRRB, VEGFA, and MMP1 genes were associated with injuries after adjusting for player load (P < .05). The genetic score created with these 6 variants determined groups of players with different profile risks (P = 3.1 × 10-4). Three metabolites (alanine, serotonin, and 5-hydroxy-tryptophan) correlated with injuries. The model comprising baseline variables, genetic score, and player load showed the best prediction capacity (C-index: .74). CONCLUSIONS: Our model could allow efficient, personalized interventions based on an athlete's vulnerability. However, we emphasize the necessity for further research in female athletes with an emphasis on validation studies involving other teams and individuals. By expanding the scope of our research and incorporating diverse populations, we can bolster the generalizability and robustness of our proposed model.

3.
Biomed Pharmacother ; 174: 116530, 2024 May.
Article En | MEDLINE | ID: mdl-38574623

BACKGROUND: Serum transaminases, alkaline phosphatase and bilirubin are common parameters used for DILI diagnosis, classification, and prognosis. However, the relevance of clinical examination, histopathology and drug chemical properties have not been fully investigated. As cholestasis is a frequent and complex DILI manifestation, our goal was to investigate the relevance of clinical features and drug properties to stratify drug-induced cholestasis (DIC) patients, and to develop a prognosis model to identify patients at risk and high-concern drugs. METHODS: DIC-related articles were searched by keywords and Boolean operators in seven databases. Relevant articles were uploaded onto Sysrev, a machine-learning based platform for article review and data extraction. Demographic, clinical, biochemical, and liver histopathological data were collected. Drug properties were obtained from databases or QSAR modelling. Statistical analyses and logistic regressions were performed. RESULTS: Data from 432 DIC patients associated with 52 drugs were collected. Fibrosis strongly associated with fatality, whereas canalicular paucity and ALP associated with chronicity. Drugs causing cholestasis clustered in three major groups. The pure cholestatic pattern divided into two subphenotypes with differences in prognosis, canalicular paucity, fibrosis, ALP and bilirubin. A predictive model of DIC outcome based on non-invasive parameters and drug properties was developed. Results demonstrate that physicochemical (pKa-a) and pharmacokinetic (bioavailability, CYP2C9) attributes impinged on the DIC phenotype and allowed the identification of high-concern drugs. CONCLUSIONS: We identified novel associations among DIC manifestations and disclosed novel DIC subphenotypes with specific clinical and chemical traits. The developed predictive DIC outcome model could facilitate DIC prognosis in clinical practice and drug categorization.


Cholestasis , Machine Learning , Phenotype , Humans , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/etiology , Cholestasis/chemically induced , Databases, Factual , Prognosis
4.
Int J Mol Sci ; 25(5)2024 Mar 05.
Article En | MEDLINE | ID: mdl-38474249

Drug-induced liver injury (DILI) is a serious adverse hepatic event presenting diagnostic and prognostic challenges. The clinical categorization of DILI into hepatocellular, cholestatic, or mixed phenotype is based on serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) values; however, this classification may not capture the full spectrum of DILI subtypes. With this aim, we explored the utility of assessing changes in the plasma metabolomic profiles of 79 DILI patients assessed by the RUCAM (Roussel Uclaf Causality Assessment Method) score to better characterize this condition and compare results obtained with the standard clinical characterization. Through the identification of various metabolites in the plasma (including free and conjugated bile acids and glycerophospholipids), and the integration of this information into predictive models, we were able to evaluate the extent of the hepatocellular or cholestatic phenotype and to assign a numeric value with the contribution of each specific DILI sub-phenotype into the patient's general condition. Additionally, our results showed that metabolomic analysis enabled the monitoring of DILI variability responses to the same drug, the transitions between sub-phenotypes during disease progression, and identified a spectrum of residual DILI metabolic features, which can be overlooked using standard clinical diagnosis during patient follow-up.


Chemical and Drug Induced Liver Injury , Cholestasis , Humans , Risk Factors , Alanine Transaminase
5.
Analyst ; 148(17): 3986-3991, 2023 Aug 21.
Article En | MEDLINE | ID: mdl-37539806

A fast and accurate assessment of liver steatosis is crucial during liver transplantation surgery as it can negatively impact its success. Recent research has shown that near-infrared (NIR) and attenuated total reflectance-Fourier transform mid-infrared (ATR-FTIR) spectroscopy could be used as real-time quantitative tools to assess steatosis during abdominal surgery. Here, in the frame of a clinical study, we explore the performance of NIR and ATR-FTIR spectroscopy for the direct assessment of steatosis in liver tissues. Results show that both NIR and ATR-FTIR spectroscopy are able to quantify the % of steatosis with cross-validation errors of 1.4 and 1.6%, respectively. Furthermore, the two portable instruments used both provided results within seconds and can be placed inside an operating room evidencing the potential of IR spectroscopy for initial characterization of grafts in liver transplantation surgery. We also evaluated the complementarity of the spectral ranges through correlation spectroscopy.


Fatty Liver , Organ Transplantation , Humans , Spectroscopy, Fourier Transform Infrared/methods , Spectroscopy, Near-Infrared/methods
7.
Nutrients ; 15(14)2023 Jul 18.
Article En | MEDLINE | ID: mdl-37513605

Bariatric surgery (BS) has several benefits, including resolution of non-alcoholic fatty liver disease (NAFLD) in many patients. However, a significant percentage of patients do not experience improvement in fatty liver after BS, and more than 10% develop new or worsening NAFLD features. Therefore, a question that remains unanswered is why some patients experience resolved NAFLD after BS and others do not. In this study, we investigated the fecal microbiota and plasma bile acids associated with NAFLD resolution in twelve morbidly obese patients undergoing BS, of whom six resolved their steatosis one year after surgery and another six did not. Results indicate that the hallmark of the gut microbiota in responder patients is a greater abundance of Bacteroides, Akkermansia, and several species of the Clostridia class (genera: Blautia, Faecalibacterium, Roseburia, Butyricicoccusa, and Clostridium), along with a decreased abundance of Actinomycetes/Bifidobacterium and Faecalicatena. NAFLD resolution was also associated with a sustained increase in primary bile acids (particularly non-conjugated), which likely results from a reduction in bacterial gut species capable of generating secondary bile acids. We conclude that there are specific changes in gut microbiota and plasma bile acids that could contribute to resolving NAFLD in BS patients. The knowledge acquired can help to design interventions with prebiotics and/or probiotics to promote a gut microbiome that favors NAFLD resolution.


Bariatric Surgery , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Obesity, Morbid , Humans , Non-alcoholic Fatty Liver Disease/microbiology , Bile Acids and Salts , Obesity, Morbid/surgery , Liver
8.
Anal Bioanal Chem ; 415(20): 4961-4971, 2023 Aug.
Article En | MEDLINE | ID: mdl-37338567

Bile acids (BAs) are a complex class of metabolites that have been described as specific biomarkers of gut microbiota activity. The development of analytical methods allowing the quantification of an ample spectrum of BAs in different biological matrices is needed to enable a wider implementation of BAs as complementary measures in studies investigating the functional role of the gut microbiota. This work presents results from the validation of a targeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the determination of 28 BAs and six sulfated BAs, covering primary, secondary, and conjugated BAs. The analysis of 73 urine and 20 feces samples was used to test the applicability of the method. Concentrations of BAs in human urine and murine feces were reported, ranging from 0.5 to 50 nmol/g creatinine and from 0.012 to 332 nmol/g, respectively. Seventy-nine percent of BAs present in human urine samples corresponded to secondary conjugated BAs, while 69% of BAs present in murine feces corresponded to primary conjugated BAs. Glycocholic acid sulfate (GCA-S) was the most abundant BA in human urine samples, while taurolithocholic acid was the lowest concentrated compound detected. In murine feces, the most abundant BAs were α-murocholic, deoxycholic, dehydrocholic, and ß-murocholic acids, while GCA-S was the lowest concentrated BA. The presented method is a non-invasive approach for the simultaneous assessment of BAs and sulfated BAs in urine and feces samples, and the results will serve as a knowledge base for future translational studies focusing on the role of the microbiota in health.


Bile Acids and Salts , Tandem Mass Spectrometry , Humans , Mice , Animals , Bile Acids and Salts/analysis , Tandem Mass Spectrometry/methods , Sulfates/analysis , Chromatography, High Pressure Liquid/methods , Feces/chemistry
9.
Analyst ; 148(13): 3097-3106, 2023 Jun 26.
Article En | MEDLINE | ID: mdl-37313751

The assessment of liver steatosis is crucial in both hepatology and liver transplantation (LT) surgery. Steatosis can negatively impact the success of LT. Steatosis is a factor for excluding donated organs for LT, but the increasing demand for transplantable organs has led to the use of organs from marginal donors. The current standard for evaluating steatosis is a semi-quantitative grading based on the visual examination of a hematoxylin and eosin (H&E)-stained liver biopsy, but this method is time-consuming, subjective, and lacks reproducibility. Recent research has shown that infrared (IR) spectroscopy could be used as a real-time quantitative tool to assess steatosis during abdominal surgery. However, the development of IR-based methods has been hindered by the lack of appropriate quantitative reference values. In this study, we developed and validated digital image analysis methods for the quantitation of steatosis in H&E-stained liver sections using univariate and multivariate strategies including linear discriminant analysis (LDA), quadratic DA, logistic regression, partial least squares-DA (PLS-DA), and support vector machines. The analysis of 37 tissue samples with varying grades of steatosis demonstrates that digital image analysis provides accurate and reproducible reference values that improve the performance of IR spectroscopic models for steatosis quantification. A PLS model in the 1810-1052 cm-1 region using first derivative ATR-FTIR spectra provided RMSECV = 0.99%. The gained improvement in accuracy critically enhances the applicability of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) to support an objective graft evaluation at the operation room, which might be especially relevant in cases of marginal liver donors to avoid unnecessary graft explantation.


Fatty Liver , Humans , Spectroscopy, Fourier Transform Infrared/methods , Reproducibility of Results , Spectrophotometry, Infrared , Fatty Liver/diagnostic imaging , Fatty Liver/pathology , Discriminant Analysis , Least-Squares Analysis
10.
Pediatr Res ; 94(4): 1436-1443, 2023 Oct.
Article En | MEDLINE | ID: mdl-37188799

BACKGROUND: Hypoxemia is a physiological manifestation of immature respiratory control in preterm neonates, which is likely impacted by neurotransmitter imbalances. We investigated relationships between plasma levels of the neurotransmitter serotonin (5-HT), metabolites of tryptophan (TRP), and parameters of hypoxemia in preterm neonates. METHODS: TRP, 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), and kynurenic acid (KA) were analyzed in platelet-poor plasma at ~1 week and ~1 month of life from a prospective cohort of 168 preterm neonates <31 weeks gestational age (GA). Frequency of intermittent hypoxemia (IH) events and percent time hypoxemic (<80%) were analyzed in a 6 h window after the blood draw. RESULTS: At 1 week, infants with detectable plasma 5-HT had fewer IH events (OR (95% CI) = 0.52 (0.29, 0.31)) and less percent time <80% (OR (95% CI) = 0.54 (0.31, 0.95)) compared to infants with undetectable 5-HT. A similar relationship occurred at 1 month. At 1 week, infants with higher KA showed greater percent time <80% (OR (95% CI) = 1.90 (1.03, 3.50)). TRP, 5-HIAA or KA were not associated with IH frequency at either postnatal age. IH frequency and percent time <80% were positively associated with GA < 29 weeks. CONCLUSIONS: Circulating neuromodulators 5-HT and KA might represent biomarkers of immature respiratory control contributing to hypoxemia in preterm neonates. IMPACT: Hypoxemia events are frequent in preterm infants and are associated with poor outcomes. Mechanisms driving hypoxemia such as immature respiratory control may include central and peripheral imbalances in modulatory neurotransmitters. This study found associations between the plasma neuromodulators serotonin and kynurenic acid and parameters of hypoxemia in preterm neonates. Imbalances in plasma biomarkers affecting respiratory control may help identify neonates at risk of short- and long-term adverse outcomes.


Infant, Premature , Serotonin , Infant , Humans , Infant, Newborn , Serotonin/metabolism , Prospective Studies , Hydroxyindoleacetic Acid , Kynurenic Acid , Hypoxia , Tryptophan , Biomarkers , Neurotransmitter Agents
11.
Front Pharmacol ; 14: 1155271, 2023.
Article En | MEDLINE | ID: mdl-37214440

Drug hepatotoxicity assessment is a relevant issue both in the course of drug development as well as in the post marketing phase. The use of human relevant in vitro models in combination with powerful analytical methods (metabolomic analysis) is a promising approach to anticipate, as well as to understand and investigate the effects and mechanisms of drug hepatotoxicity in man. The metabolic profile analysis of biological liver models treated with hepatotoxins, as compared to that of those treated with non-hepatotoxic compounds, provides useful information for identifying disturbed cellular metabolic reactions, pathways, and networks. This can later be used to anticipate, as well to assess, the potential hepatotoxicity of new compounds. However, the applicability of the metabolomic analysis to assess the hepatotoxicity of drugs is complex and requires careful and systematic work, precise controls, wise data preprocessing and appropriate biological interpretation to make meaningful interpretations and/or predictions of drug hepatotoxicity. This review provides an updated look at recent in vitro studies which used principally mass spectrometry-based metabolomics to evaluate the hepatotoxicity of drugs. It also analyzes the principal drawbacks that still limit its general applicability in safety assessment screenings. We discuss the analytical workflow, essential factors that need to be considered and suggestions to overcome these drawbacks, as well as recent advancements made in this rapidly growing field of research.

12.
Arch Toxicol ; 97(6): 1723-1738, 2023 06.
Article En | MEDLINE | ID: mdl-37022445

Toxicity studies, among them hepatotoxicity, are key throughout preclinical stages of drug development to minimise undesired toxic effects that might eventually appear in the course of the clinical use of the new drug. Understanding the mechanism of injury of hepatotoxins is essential to efficiently anticipate their potential risk of toxicity in humans. The use of in vitro models and particularly cultured hepatocytes represents an easy and robust alternative to animal drug hepatotoxicity testing for predicting human risk. Here, we envisage an innovative strategy to identify potential hepatotoxic drugs, quantify the magnitude of the alterations caused, and uncover the mechanisms of toxicity. This strategy is based on the comparative analysis of metabolome changes induced by hepatotoxic and non-hepatotoxic compounds on HepG2 cells, assessed by untargeted mass spectrometry. As a training set, we used 25 hepatotoxic and 4 non-hepatotoxic compounds and incubated HepG2 cells for 24 h at a low and a high concentration (IC10 and IC50) to identify mechanism-related and cytotoxicity related metabolomic biomarkers and to elaborate prediction models accounting for global hepatotoxicity and mechanisms-related toxicity. Thereafter, a second set of 69 chemicals with known predominant mechanisms of toxicity and 18 non-hepatotoxic compounds were analysed at 1, 10, 100 and 1000 µM concentrations from which and based on the magnitude of the alterations caused as compared with non-toxic compounds, we defined a "toxicity index" for each compound. In addition, we extracted from the metabolome data the characteristic signatures for each mechanism of hepatotoxicity. The integration of all this information allowed us to identify specific metabolic patterns and, based on the occurrence of that specific metabolome changes, the models predicted the likeliness of a compound to behave as hepatotoxic and to act through a given toxicity mechanism (i.e., oxidative stress, mitochondrial disruption, apoptosis and steatosis) for each compound and concentration.


Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Fatty Liver , Animals , Humans , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Drug-Related Side Effects and Adverse Reactions/metabolism , Hepatocytes , Hep G2 Cells , Fatty Liver/metabolism
13.
Nutrients ; 15(5)2023 Feb 22.
Article En | MEDLINE | ID: mdl-36904100

Human milk (HM) is a complex biofluid containing a wide cell variety including epithelial cells and leukocytes. However, the cellular compositions and their phenotypic properties over the course of lactation are poorly understood. The aim of this preliminary study was to characterize the cellular metabolome of HM over the course of lactation. Cells were isolated via centrifugation and the cellular fraction was characterized via cytomorphology and immunocytochemical staining. Cell metabolites were extracted and analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-QqTOF-MS) in the positive and negative electrospray ionization modes. Immunocytochemical analysis revealed a high variability of the number of detected cells with relative median abundances of 98% of glandular epithelial cells, 1% of leukocytes, and 1% of keratinocytes. Significant correlations between the milk postnatal age with percentage of epithelial cells and leukocytes, and with total cell count were observed. Results from the Hierarchical Cluster Analysis of immunocytochemical profiles were very similar to those observed in the analysis of the metabolomic profiles. In addition, metabolic pathway analysis showed alterations in seven metabolic pathways correlating with postnatal age. This work paves the way for future investigations on changes in the metabolomic fraction of the cellular compartment of HM.


Lactation , Milk, Human , Female , Humans , Lactation/metabolism , Metabolomics/methods , Mass Spectrometry/methods , Breast Feeding , Metabolome , Chromatography, High Pressure Liquid/methods
14.
Gut Microbes ; 15(1): 2181928, 2023.
Article En | MEDLINE | ID: mdl-36823075

Hypercaloric diets overactivate the intestinal immune system and disrupt the microbiome and epithelial cell functions, impairing glucose metabolism. The origins of this inflammatory cascade are poorly characterized. We investigated the involvement of intestinal proinflammatory group 1 innate lymphoid cells (ILC1s) in obesity progression and metabolic disruption. In obese mice, we studied longitudinally the ILC1s response to the diet and ILC1s depletion to address its role in obesity. ILC1s are required for the expansion of pro-inflammatory macrophages and ILC2s. ILC1s depletion induced the ILC3-IL-22 pathway, increasing mucin production, antimicrobial peptides, and neuroendocrine cells. These changes were translated into higher gut hormones and reduced insulinemia and adiposity. ILC1s depletion was also associated with a bloom in Akkermansia muciniphila and decreases in Bilophila spp. Intestinal-ILC1s are upstream activators of inflammatory signals, connecting immunity with the microbiome, the enteroendocrine system, and the intestinal barrier in the control of glucose metabolism and adiposity.


Gastrointestinal Microbiome , Immunity, Innate , Mice , Animals , Lymphocytes/metabolism , Obesity/metabolism , Inflammation , Macrophages/metabolism , Glucose
15.
Pediatr Res ; 94(1): 331-340, 2023 07.
Article En | MEDLINE | ID: mdl-36639516

BACKGROUND: Neonatal encephalopathy (NE) is a major cause of mortality and severe neurological disability in the neonatal period and beyond. We hypothesized that the degree of brain injury is reflected in the molecular composition of peripheral blood samples. METHODS: A sub-cohort of 28 newborns included in the HYPOTOP trial was studied. Brain injury was assessed by magnetic resonance imaging (MRI) once per patient and neurodevelopment at 24 months of age was evaluated using the Bayley III Scales of Infant and Toddler Development. The nuclear magnetic resonance (NMR) profile of 60 plasma samples collected before, during, and after cooling was recorded. RESULTS: In total, 249 molecular features were quantitated in plasma samples from newborns and postnatal age showed to affect detected NMR profiles. Lactate, beta-hydroxybutyrate, pyruvate, and three triglyceride biomarkers showed the ability to discern between different degrees of brain injury according to MRI scores. The prediction performance of lactate was superior as compared to other clinical and biochemical parameters. CONCLUSIONS: This is the first longitudinal study of an ample compound panel recorded by NMR spectroscopy in plasma from NE infants. The serial determination of lactate confirms its solid position as reliable candidate biomarker for predicting the severity of brain injury. IMPACT: The use of nuclear magnetic resonance (NMR) spectroscopy enables the simultaneous quantitation of 249 compounds in a small volume (i.e., 100 µL) of plasma. Longitudinal perturbations of plasma NMR profiles were linked to magnetic resonance imaging (MRI) outcomes of infants with neonatal encephalopathy (NE). Lactate, beta-hydroxybutyrate, pyruvate, and three triglyceride biomarkers showed the ability to discern between different degrees of brain injury according to MRI scores. Lactate is a minimally invasive candidate biomarker for early staging of MRI brain injury in NE infants that might be readily implemented in clinical guidelines for NE outcome prediction.


Brain Injuries , Hypothermia, Induced , Hypoxia-Ischemia, Brain , Infant, Newborn, Diseases , Infant , Humans , Infant, Newborn , Longitudinal Studies , 3-Hydroxybutyric Acid , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Brain Injuries/diagnostic imaging , Lactic Acid , Hypoxia-Ischemia, Brain/therapy , Biomarkers , Pyruvates , Hypothermia, Induced/methods
16.
Methods Mol Biol ; 2571: 177-188, 2023.
Article En | MEDLINE | ID: mdl-36152162

Extracellular vesicles (EVs) are secreted by cells and can be found in biological fluids (e.g., blood, saliva, urine, cerebrospinal fluid, and milk). EV isolation needs to be optimized carefully depending on the type of biofluid and tissue. Human milk (HM) is known to be a rich source of EVs, and they are thought to be partially responsible for the benefits associated with breastfeeding. Here, a workflow for the isolation and lipidomic analysis of HM-EVs is described. The procedure encompasses initial steps such as sample collection and storage, a detailed description for HM-EV isolation by multistage ultracentrifugation, metabolite extraction, and analysis by liquid chromatography coupled to mass spectrometry, as well as data analysis and curation.


Extracellular Vesicles , Lipidomics , Chromatography, Liquid/methods , Extracellular Vesicles/metabolism , Humans , Mass Spectrometry , Milk, Human
17.
Front Physiol ; 13: 923608, 2022.
Article En | MEDLINE | ID: mdl-36246100

Professional athletes undertake a variety of training programs to enhance their physical performance, technical-tactical skills, while protecting their health and well-being. Regular exercise induces widespread changes in the whole body in an extremely complex network of signaling, and evidence indicates that phenotypical sex differences influence the physiological adaptations to player load of professional athletes. Despite that there remains an underrepresentation of women in clinical studies in sports, including football. The objectives of this study were twofold: to study the association between the external load (EPTS) and urinary metabolites as a surrogate of the adaptation to training, and to assess the effect of sex on the physiological adaptations to player load in professional football players. Targeted metabolic analysis of aminoacids, and tryptophan and phenylalanine metabolites detected progressive changes in the urinary metabolome associated with the external training load in men and women's football teams. Overrepresentation analysis and multivariate analysis of metabolic data showed significant differences of the effect of training on the metabolic profiles in the men and women teams analyzed. Collectively, our results demonstrate that the development of metabolic models of adaptation in professional football players can benefit from the separate analysis of women and men teams, providing more accurate insights into how adaptation to the external load is related to changes in the metabolic phenotypes. Furthermore, results support the use of metabolomics to understand changes in specific metabolic pathways provoked by the training process.

18.
Int J Mol Sci ; 23(16)2022 Aug 18.
Article En | MEDLINE | ID: mdl-36012565

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease worldwide, but a reliable non-invasive method to quantify liver steatosis in primary healthcare is not available. Circulating microRNAs have been proposed as biomarkers of severe/advanced NAFLD (steatohepatitis and fibrosis). However, the use of circulating miRNAs to quantitatively assess the % of liver fat in suspected NAFLD patients has not been investigated. We performed global miRNA sequencing in two sets of samples: human livers from organ donors (n = 20), and human sera from biopsy-proven NAFLD patients (n = 23), both with a wide range of steatosis quantified in their liver biopsies. Partial least squares (PLS) regression combined with recursive feature elimination (RFE) was used to select miRNAs associated with steatosis. Moreover, regression models with only 2 or 3 miRNAs, with high biological relevance, were built. Comprehensive microRNA sequencing of liver and serum samples resulted in two sets of abundantly expressed miRNAs (418 in liver and 351 in serum). Pearson correlation analyses indicated that 18% of miRNAs in liver and 14.5% in serum were significantly associated with the amount of liver fat. PLS-RFE models demonstrated that 50 was the number of miRNAs providing the lowest error in both liver and serum models predicting steatosis. Comparison of the two miRNA subsets showed 19 coincident miRNAs that were ranked according to biological significance (guide/passenger strand, relative abundance in liver and serum, number of predicted lipid metabolism target genes, correlation significance, etc.). Among them, miR-10a-5p, miR-98-5p, miR-19a-3p, miR-30e-5p, miR-32-5p and miR-145-5p showed the highest biological relevance. PLS regression models with serum levels of 2−3 of these miRNAs predicted the % of liver fat with errors <5%.


Circulating MicroRNA , MicroRNAs , Non-alcoholic Fatty Liver Disease , Circulating MicroRNA/genetics , Circulating MicroRNA/metabolism , Humans , Lipid Metabolism , Liver/metabolism , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
19.
Metabolites ; 12(6)2022 Jun 19.
Article En | MEDLINE | ID: mdl-35736496

Drug-induced liver injury (DILI) is one of the most frequent adverse clinical reactions and a relevant cause of morbidity and mortality. Hepatotoxicity is among the major reasons for drug withdrawal during post-market and late development stages, representing a major concern to the pharmaceutical industry. The current biochemical parameters for the detection of DILI are based on enzymes (alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), alkaline phosphatase (ALP)) and bilirubin serum levels that are not specific of DILI and therefore there is an increasing interest on novel, specific, DILI biomarkers discovery. Metabolomics has emerged as a tool with a great potential for biomarker discovery, especially in disease diagnosis, and assessment of drug toxicity or efficacy. This review summarizes the multistep approaches in DILI biomarker research and discovery based on metabolomics and the principal outcomes from the research performed in this field. For that purpose, we have reviewed the recent scientific literature from PubMed, Web of Science, EMBASE, and PubTator using the terms "metabolomics", "DILI", and "humans". Despite the undoubted contribution of metabolomics to our understanding of the underlying mechanisms of DILI and the identification of promising novel metabolite biomarkers, there are still some inconsistencies and limitations that hinder the translation of these research findings into general clinical practice, probably due to the variability of the methods used as well to the different mechanisms elicited by the DILI causing agent.

20.
Antioxidants (Basel) ; 11(6)2022 Jun 14.
Article En | MEDLINE | ID: mdl-35740062

The glutathione (GSH)-to-glutathione disulfide (GSSG) ratio is an essential node contributing to intracellular redox status. GSH/GSSG determination in whole blood can be accomplished by liquid chromatography-mass spectrometry (LC-MS) after the derivatization of GSH with N-ethylmaleimide (NEM). While this is feasible in a laboratory environment, its application in the clinical scenario is cumbersome and therefore ranges reported in similar populations differ noticeably. In this work, an LC-MS procedure for the determination of GSH and GSSG in dried blood spot (DBS) samples based on direct in situ GSH derivatization with NEM of only 10 µL of blood was developed. This novel method was applied to 73 cord blood samples and 88 residual blood volumes from routine newborn screening performed at discharge from healthy term infants. Two clinical scenarios simulating conditions of sampling and storage relevant for routine clinical analysis and clinical trials were assessed. Levels of GSH-NEM and GSSG measured in DBS samples were comparable to those obtained by liquid blood samples. GSH-NEM and GSSG median values for cord blood samples were significantly lower than those for samples at discharge. However, the GSH-NEM-to-GSSG ratios were not statistically different between both groups. With DBS testing, the immediate manipulation of samples by clinical staff is reduced. We therefore expect that this method will pave the way in providing an accurate and more robust determination of the GSH/GSSG values and trends reported in clinical trials.

...