Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell ; 187(2): 331-344.e17, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38194964

RESUMEN

Enhancers are distal DNA elements believed to loop and contact promoters to control gene expression. Recently, we found diffraction-sized transcriptional condensates at genes controlled by clusters of enhancers (super-enhancers). However, a direct function of endogenous condensates in controlling gene expression remains elusive. Here, we develop live-cell super-resolution and multi-color 3D-imaging approaches to investigate putative roles of endogenous condensates in the regulation of super-enhancer controlled gene Sox2. In contrast to enhancer distance, we find instead that the condensate's positional dynamics are a better predictor of gene expression. A basal gene bursting occurs when the condensate is far (>1 µm), but burst size and frequency are enhanced when the condensate moves in proximity (<1 µm). Perturbations of cohesin and local DNA elements do not prevent basal bursting but affect the condensate and its burst enhancement. We propose a three-way kissing model whereby the condensate interacts transiently with gene locus and regulatory DNA elements to control gene bursting.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción SOXB1 , Súper Potenciadores , Transcripción Genética , ADN/genética , Elementos de Facilitación Genéticos , Factores de Transcripción SOXB1/genética , Animales , Ratones , Células Madre Embrionarias/metabolismo , Microscopía/métodos
3.
Nature ; 610(7932): 555-561, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171294

RESUMEN

CD4+ T cell differentiation requires metabolic reprogramming to fulfil the bioenergetic demands of proliferation and effector function, and enforce specific transcriptional programmes1-3. Mitochondrial membrane dynamics sustains mitochondrial processes4, including respiration and tricarboxylic acid (TCA) cycle metabolism5, but whether mitochondrial membrane remodelling orchestrates CD4+ T cell differentiation remains unclear. Here we show that unlike other CD4+ T cell subsets, T helper 17 (TH17) cells have fused mitochondria with tight cristae. T cell-specific deletion of optic atrophy 1 (OPA1), which regulates inner mitochondrial membrane fusion and cristae morphology6, revealed that TH17 cells require OPA1 for its control of the TCA cycle, rather than respiration. OPA1 deletion amplifies glutamine oxidation, leading to impaired NADH/NAD+ balance and accumulation of TCA cycle metabolites and 2-hydroxyglutarate-a metabolite that influences the epigenetic landscape5,7. Our multi-omics approach revealed that the serine/threonine kinase liver-associated kinase B1 (LKB1) couples mitochondrial function to cytokine expression in TH17 cells by regulating TCA cycle metabolism and transcriptional remodelling. Mitochondrial membrane disruption activates LKB1, which restrains IL-17 expression. LKB1 deletion restores IL-17 expression in TH17 cells with disrupted mitochondrial membranes, rectifying aberrant TCA cycle glutamine flux, balancing NADH/NAD+ and preventing 2-hydroxyglutarate production from the promiscuous activity of the serine biosynthesis enzyme phosphoglycerate dehydrogenase (PHGDH). These findings identify OPA1 as a major determinant of TH17 cell function, and uncover LKB1 as a sensor linking mitochondrial cues to effector programmes in TH17 cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Mitocondrias , Células Th17 , Glutamina/metabolismo , Interleucina-17/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/biosíntesis , Serina/metabolismo , Células Th17/citología , Células Th17/inmunología , Células Th17/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ciclo del Ácido Cítrico , GTP Fosfohidrolasas/deficiencia , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
4.
Cell Metab ; 34(5): 747-760.e6, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35508110

RESUMEN

Adipose tissue (AT) plays a central role in systemic metabolic homeostasis, but its function during bacterial infection remains unclear. Following subcutaneous bacterial infection, adipocytes surrounding draining lymph nodes initiated a transcriptional response indicative of stimulation with IFN-γ and a shift away from lipid metabolism toward an immunologic function. Natural killer (NK) and invariant NK T (iNKT) cells were identified as sources of infection-induced IFN-γ in perinodal AT (PAT). IFN-γ induced Nos2 expression in adipocytes through a process dependent on nuclear-binding oligomerization domain 1 (NOD1) sensing of live intracellular bacteria. iNOS expression was coupled to metabolic rewiring, inducing increased diversion of extracellular L-arginine through the arginosuccinate shunt and urea cycle to produce nitric oxide (NO), directly mediating bacterial clearance. In vivo, control of infection in adipocytes was dependent on adipocyte-intrinsic sensing of IFN-γ and expression of iNOS. Thus, adipocytes are licensed by innate lymphocytes to acquire anti-bacterial functions during infection.


Asunto(s)
Señales (Psicología) , Células Asesinas Naturales , Adipocitos/metabolismo , Inmunidad , Interferón gamma/metabolismo
5.
J Craniofac Surg ; 32(6): 2159-2162, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34516070

RESUMEN

INTRODUCTION: Within the treatment protocols of patients with cleft lip and palate, the nasoalveolar molding (NAM) acquire more followers every day.Their benefits have been well documented, but not equally their complications. The purpose of this study was to describe the complications produced during treatment with Grayson presurgical NAM in nonsyndromic infants with complete unilateral cleft lip and palate. METHODS: Bibliographic review on 8 databases using search algorithms. By applying the exclusion and inclusion criteria, 21 articles were detected, which were analyzed in full text. Complication, cause, and solution data were presented in supplemental tables. RESULTS: Complications are related to soft tissues, hard tissues, and those derived from care. SOFT TISSUES: irritation, ulceration, gingival, facial, or nasal bleeding. Candidiasis. An overexpanded nostril creation to improper placement or modifications of the nasal stent at home.The most frequent were lip and cheeks skin irritation by taping, and gingival ulceration due to excessive pressure. HARD TISSUES: misalignment of alveolar segments and the premature eruption of teeth. DERIVED FROM CARE: inadequate device retention, adherence problems to treatment, poor/excessive care of the caregiver, intolerance to the device, eating problems, breathing, and socioeconomic issues. CONCLUSIONS: The main complications occur in soft tissues, related to the retention mechanisms and an inadequate adjustment of the device.The benefits of NAM exceed the complications. It is necessary to know them to avoid any harmful results since they could prolong or stop the treatment, compromising the result. The active collaboration of the family in the insertion and maintenance of the device is crucial for success.


Asunto(s)
Labio Leporino , Fisura del Paladar , Proceso Alveolar/cirugía , Labio Leporino/cirugía , Fisura del Paladar/cirugía , Humanos , Lactante , Modelado Nasoalveolar , Nariz , Cuidados Preoperatorios
6.
Cell Metab ; 32(6): 981-995.e7, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33264603

RESUMEN

Mitochondria constantly adapt to the metabolic needs of a cell. This mitochondrial plasticity is critical to T cells, which modulate metabolism depending on antigen-driven signals and environment. We show here that de novo synthesis of the mitochondrial membrane-specific lipid cardiolipin maintains CD8+ T cell function. T cells deficient for the cardiolipin-synthesizing enzyme PTPMT1 had reduced cardiolipin and responded poorly to antigen because basal cardiolipin levels were required for activation. However, neither de novo cardiolipin synthesis, nor its Tafazzin-dependent remodeling, was needed for T cell activation. In contrast, PTPMT1-dependent cardiolipin synthesis was vital when mitochondrial fitness was required, most notably during memory T cell differentiation or nutrient stress. We also found CD8+ T cell defects in a small cohort of patients with Barth syndrome, where TAFAZZIN is mutated, and in a Tafazzin-deficient mouse model. Thus, the dynamic regulation of a single mitochondrial lipid is crucial for CD8+ T cell immunity.


Asunto(s)
Aciltransferasas/inmunología , Síndrome de Barth/inmunología , Linfocitos T CD8-positivos/inmunología , Cardiolipinas/inmunología , Mitocondrias/inmunología , Fosfohidrolasa PTEN/inmunología , Animales , Síndrome de Barth/patología , Linfocitos T CD8-positivos/citología , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
J Virol ; 90(22): 10284-10298, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27605673

RESUMEN

Giant tailed bacterial viruses, or phages, such as Pseudomonas aeruginosa phage ϕKZ, have long genomes packaged into large, atypical virions. Many aspects of ϕKZ and related phage biology are poorly understood, mostly due to the fact that the functions of the majority of their proteins are unknown. We hypothesized that the Salmonella enterica phage SPN3US could be a useful model phage to address this gap in knowledge. The 240-kb SPN3US genome shares a core set of 91 genes with ϕKZ and related phages, ∼61 of which are virion genes, consistent with the expectation that virion complexity is an ancient, conserved feature. Nucleotide sequencing of 18 mutants enabled assignment of 13 genes as essential, information which could not have been determined by sequence-based searches for 11 genes. Proteome analyses of two SPN3US virion protein mutants with knockouts in 64 and 241 provided new insight into the composition and assembly of giant phage heads. The 64 mutant analyses revealed all the genetic determinants required for assembly of the SPN3US head and a likely head-tail joining role for gp64, and its homologs in related phages, due to the tailless-particle phenotype produced. Analyses of the mutation in 241, which encodes an RNA polymerase ß subunit, revealed that without this subunit, no other subunits are assembled into the head, and enabled identification of a "missing" ß' subunit domain. These findings support SPN3US as an excellent model for giant phage research, laying the groundwork for future analyses of their highly unusual virions, host interactions, and evolution. IMPORTANCE: In recent years, there has been a paradigm shift in virology with the realization that extremely large viruses infecting prokaryotes (giant phages) can be found in many environments. A group of phages related to the prototype giant phage ϕKZ are of great interest due to their virions being among the most complex of prokaryotic viruses and their potential for biocontrol and phage therapy applications. Our understanding of the biology of these phages is limited, as a large proportion of their proteins have not been characterized and/or have been deemed putative without any experimental verification. In this study, we analyzed Salmonella phage SPN3US using a combination of genomics, genetics, and proteomics and in doing so revealed new information regarding giant phage head structure and assembly and virion RNA polymerase composition. Our findings demonstrate the suitability of SPN3US as a model phage for the growing group of phages related to ϕKZ.


Asunto(s)
Genes Esenciales/genética , Fagos de Salmonella/genética , Proteínas Virales/genética , ARN Polimerasas Dirigidas por ADN/genética , Genoma Viral/genética , Virión/genética
9.
Twin Res Hum Genet ; 15(4): 527-31, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22853881

RESUMEN

Twin-to-twin transfusion syndrome (TTTS) is due to unbalanced inter-twin bloodflow through placental vascular anastomoses. We present a TTTS case treated with fetoscopic laser photocoagulation (FLP) that was complicated by perinatal meconium peritonitis in both twins. Ten weeks following laser treatment, the two fetuses showed intra-abdominal hyperechogenicity and ascites. After birth, the two newborns were surgically managed for peritonitis. We discuss the pathogenesis of this double insult. The present case highlights the role of end-circulation bowel thrombi as the potential cause of subsequent intestinal perforation.


Asunto(s)
Transfusión Feto-Fetal/terapia , Meconio , Peritonitis/etiología , Peritonitis/cirugía , Adulto , Cesárea , Resultado Fatal , Femenino , Transfusión Feto-Fetal/diagnóstico por imagen , Humanos , Recién Nacido , Masculino , Embarazo , Embarazo Gemelar , Ultrasonografía Prenatal
10.
11.
Biochem Biophys Res Commun ; 334(2): 674-80, 2005 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-16009337

RESUMEN

Calcineurin (CaN) binds Ca(2+)-saturated calmodulin (CaM) with relatively high affinity; however, an accurate steady-state K(d) value has not been determined. In this report, we describe, using steady-state and stopped-flow fluorescence techniques, the rates of association and dissociation of Ca(2+)-saturated CaM from CaN heterodimer (CaNA/CaNB) and CaNA only. The rate of Ca(2+)/CaM association was determined to be 4.6 x 10(7) M(-1)s(-1). The rate of Ca(2+)/CaM dissociation from CaN was slower than previously reported and was approximately 0.0012 s(-1). In preparations of CaNA alone (no regulatory CaNB subunit), the dissociation rate was slowed further to 0.00026 s(-1). From these data we calculate a K(d) for binding of Ca(2+)-saturated CaM to CaN of 28 pM. This K(d) is significantly lower than previously reported estimates of approximately 1 nM and indicates that CaN is one of the highest affinity CaM-binding proteins identified to date.


Asunto(s)
Calcineurina/análisis , Calcineurina/química , Calmodulina/análisis , Calmodulina/química , Activación Enzimática , Cinética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA