Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 88(4): e0221321, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34910561

RESUMEN

Killer yeasts and their toxins have many potential applications in environmental, medical, and industrial biotechnology. The killer phenotype in Saccharomyces cerevisiae relies on the cytoplasmic persistence of two dsRNA viruses, L-A and M. M encodes the toxin, and L-A provides proteins for expression, replication, and capsids for both viruses. Yeast screening and characterization of this trait are usually performed phenotypically based on their toxin production and immunity. In this study, we describe a simple and specific reverse transcription (RT) multiplex PCR assay for direct diagnosis of the dsRNA totivirus genomes associated with the killer trait in the S. cerevisiae yeast. This method obviates RNA purification steps and primer addition to the RT reaction. Using a mixture of specific primers at the PCR step, this multiplex RT-PCR protocol provided an accurate diagnosis of both L-A and M totivirus in all its known variants, L-A-1/M1, L-A-2/M2, L-A-28/M28, and L-A-lus/Mlus, found in infected killer yeasts. Using this method, the expected L-A-2/M2 totivirus associations in natural wine yeasts cells were identified but, importantly, asymptomatic L-A-2/M2 infected cells were found in addition to unexpected L-A-lus/M2 totiviral associations. IMPORTANCE The killer phenomenon in S. cerevisiae yeast cells provides the opportunity to study host-virus interactions in a eukaryotic model. Therefore, the development of simple methods for their detection significantly facilitates their study. The simplified multiplex RT-PCR protocol described here provides a useful and accurate tool for the genotypic characterization of yeast totiviruses in killer yeast cells. The killer trait depended on two dsRNA totiviruses, L-A and M. Each M dsRNA depends on a specific helper L-A virus. Thus, direct genotyping by the described method also provided valuable insights into L-A/M viral associations and their coadaptational events in nature.


Asunto(s)
Saccharomyces cerevisiae/virología , Totivirus , Factores Asesinos de Levadura/genética , Reacción en Cadena de la Polimerasa Multiplex , ARN Bicatenario/metabolismo , ARN Viral/genética , Transcripción Reversa , Totivirus/genética , Totivirus/aislamiento & purificación , Vino/microbiología
2.
Sci Rep ; 7(1): 15895, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29162938

RESUMEN

The synthesis, processing and function of coding and non-coding RNA molecules and their interacting proteins has been the focus of a great deal of research that has boosted our understanding of key molecular pathways that underlie higher order events such as cell cycle control, development, innate immune response and the occurrence of genetic diseases. In this study, we have found that formamide preferentially weakens RNA related processes in vivo. Using a non-essential Schizosaccharomyces pombe gene deletion collection, we identify deleted loci that make cells sensitive to formamide. Sensitive deletions are significantly enriched in genes involved in RNA metabolism. Accordingly, we find that previously known temperature-sensitive splicing mutants become lethal in the presence of the drug under permissive temperature. Furthermore, in a wild type background, splicing efficiency is decreased and R-loop formation is increased in the presence of formamide. In addition, we have also isolated 35 formamide-sensitive mutants, many of which display remarkable morphology and cell cycle defects potentially unveiling new players in the regulation of these processes. We conclude that formamide preferentially targets RNA related processes in vivo, probably by relaxing RNA secondary structures and/or RNA-protein interactions, and can be used as an effective tool to characterize these processes.


Asunto(s)
Formamidas/metabolismo , ARN/metabolismo , Formamidas/farmacología , Sitios Genéticos , Genoma Fúngico , Mutación/genética , Fenotipo , Empalme del ARN/efectos de los fármacos , Empalme del ARN/genética , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...