Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Risk Anal ; 44(3): 686-704, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37666505

RESUMEN

A wide variety of weather conditions, from windstorms to prolonged heat events, can substantially impact power systems, posing many risks and inconveniences due to power outages. Accurately estimating the probability distribution of the number of customers without power using data about the power utility system and environmental and weather conditions can help utilities restore power more quickly and efficiently. However, the critical shortcoming of current models lies in the difficulties of handling (i) data streams and (ii) model uncertainty due to combining data from various weather events. Accordingly, this article proposes an adaptive ensemble learning algorithm for data streams, which deploys a feature- and performance-based weighting mechanism to adaptively combine outputs from multiple competitive base learners. As a proof of concept, we use a large, real data set of daily customer interruptions to develop the first adaptive all-weather outage prediction model using data streams. We benchmark several approaches to demonstrate the advantage of our approach in offering more accurate probabilistic predictions. The results show that the proposed algorithm reduces the probabilistic predictions' error of the base learners between 4% and 22% with an average of 8%, which also result in substantially more accurate point predictions. The improvement made by our algorithm is enhanced as we exchange base learners with simpler models.

2.
Risk Anal ; 41(7): 1248-1253, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-30261118

RESUMEN

Resilient communities are less affected by, and recover faster from, natural disasters. To be resilient in rapidly changing contemporary environments subject to the effects of complex factors such as climate change and urbanization, communities must effectively and efficiently adapt to new conditions to minimize future risks. To develop resilience, the hazards to which the community is exposed and vulnerable (i.e., future hurricanes, subsidence, salt water intrusion) must be accurately assessed, the systems (i.e., natural, built, and social) must be well understood, and the community must be engaged in the proactive planning and priority setting process. An approach to building resilience that utilizes the adaptive capacity of planning highlights opportunities to work collaboratively across disciplines to incorporate models and data from different disciplines to reduce uncertainty. We present one interdisciplinary group's approach to addressing challenges to building resilience through proactive planning, including: (1) characterizing hazards more accurately; (2) improving understanding of the vulnerability of natural (e.g., climate and infrastructure) systems subject to hazards; and (3) capturing potential synergies from interactions between planning and policies that govern decisions about the design of human settlements in hazardous areas.


Asunto(s)
Investigación Interdisciplinaria/organización & administración , Desastres Naturales , Humanos , Incertidumbre
3.
Environ Health Perspect ; 128(10): 107009, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33112191

RESUMEN

BACKGROUND: Tropical cyclone epidemiology can be advanced through exposure assessment methods that are comprehensive and consistent across space and time, as these facilitate multiyear, multistorm studies. Further, an understanding of patterns in and between exposure metrics that are based on specific hazards of the storm can help in designing tropical cyclone epidemiological research. OBJECTIVES: a) Provide an open-source data set for tropical cyclone exposure assessment for epidemiological research; and b) investigate patterns and agreement between county-level assessments of tropical cyclone exposure based on different storm hazards. METHODS: We created an open-source data set with data at the county level on exposure to four tropical cyclone hazards: peak sustained wind, rainfall, flooding, and tornadoes. The data cover all eastern U.S. counties for all land-falling or near-land Atlantic basin storms, covering 1996-2011 for all metrics and up to 1988-2018 for specific metrics. We validated measurements against other data sources and investigated patterns and agreement among binary exposure classifications based on these metrics, as well as compared them to use of distance from the storm's track, which has been used as a proxy for exposure in some epidemiological studies. RESULTS: Our open-source data set was typically consistent with data from other sources, and we present and discuss areas of disagreement and other caveats. Over the study period and area, tropical cyclones typically brought different hazards to different counties. Therefore, when comparing exposure assessment between different hazard-specific metrics, agreement was usually low, as it also was when comparing exposure assessment based on a distance-based proxy measurement and any of the hazard-specific metrics. DISCUSSION: Our results provide a multihazard data set that can be leveraged for epidemiological research on tropical cyclones, as well as insights that can inform the design and analysis for tropical cyclone epidemiological research. https://doi.org/10.1289/EHP6976.


Asunto(s)
Tormentas Ciclónicas , Exposición a Riesgos Ambientales/estadística & datos numéricos , Estado de Salud , Inundaciones , Humanos , Estados Unidos , Viento
4.
Risk Anal ; 38(12): 2722-2737, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-27779791

RESUMEN

Tropical cyclones can significantly damage the electrical power system, so an accurate spatiotemporal forecast of outages prior to landfall can help utilities to optimize the power restoration process. The purpose of this article is to enhance the predictive accuracy of the Spatially Generalized Hurricane Outage Prediction Model (SGHOPM) developed by Guikema et al. (2014). In this version of the SGHOPM, we introduce a new two-step prediction procedure and increase the number of predictor variables. The first model step predicts whether or not outages will occur in each location and the second step predicts the number of outages. The SGHOPM environmental variables of Guikema et al. (2014) were limited to the wind characteristics (speed and duration of strong winds) of the tropical cyclones. This version of the model adds elevation, land cover, soil, precipitation, and vegetation characteristics in each location. Our results demonstrate that the use of a new two-step outage prediction model and the inclusion of these additional environmental variables increase the overall accuracy of the SGHOPM by approximately 17%.

5.
Risk Anal ; 36(10): 1936-1947, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26854751

RESUMEN

In August 2012, Hurricane Isaac, a Category 1 hurricane at landfall, caused extensive power outages in Louisiana. The storm brought high winds, storm surge, and flooding to Louisiana, and power outages were widespread and prolonged. Hourly power outage data for the state of Louisiana were collected during the storm and analyzed. This analysis included correlation of hourly power outage figures by zip code with storm conditions including wind, rainfall, and storm surge using a nonparametric ensemble data mining approach. Results were analyzed to understand how correlation of power outages with storm conditions differed geographically within the state. This analysis provided insight on how rainfall and storm surge, along with wind, contribute to power outages in hurricanes. By conducting a longitudinal study of outages at the zip code level, we were able to gain insight into the causal drivers of power outages during hurricanes. Our analysis showed that the statistical importance of storm characteristic covariates to power outages varies geographically. For Hurricane Isaac, wind speed, precipitation, and previous outages generally had high importance, whereas storm surge had lower importance, even in zip codes that experienced significant surge. The results of this analysis can inform the development of power outage forecasting models, which often focus strictly on wind-related covariates. Our study of Hurricane Isaac indicates that inclusion of other covariates, particularly precipitation, may improve model accuracy and robustness across a range of storm conditions and geography.

6.
J Hydrometeorol ; 17(4): 1049-1067, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29645013

RESUMEN

Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.

7.
Risk Anal ; 34(6): 1069-78, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24152061

RESUMEN

In this article, we discuss an outage-forecasting model that we have developed. This model uses very few input variables to estimate hurricane-induced outages prior to landfall with great predictive accuracy. We also show the results for a series of simpler models that use only publicly available data and can still estimate outages with reasonable accuracy. The intended users of these models are emergency response planners within power utilities and related government agencies. We developed our models based on the method of random forest, using data from a power distribution system serving two states in the Gulf Coast region of the United States. We also show that estimates of system reliability based on wind speed alone are not sufficient for adequately capturing the reliability of system components. We demonstrate that a multivariate approach can produce more accurate power outage predictions.

8.
Risk Anal ; 31(12): 1897-906, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21488925

RESUMEN

This article compares statistical methods for modeling power outage durations during hurricanes and examines the predictive accuracy of these methods. Being able to make accurate predictions of power outage durations is valuable because the information can be used by utility companies to plan their restoration efforts more efficiently. This information can also help inform customers and public agencies of the expected outage times, enabling better collective response planning, and coordination of restoration efforts for other critical infrastructures that depend on electricity. In the long run, outage duration estimates for future storm scenarios may help utilities and public agencies better allocate risk management resources to balance the disruption from hurricanes with the cost of hardening power systems. We compare the out-of-sample predictive accuracy of five distinct statistical models for estimating power outage duration times caused by Hurricane Ivan in 2004. The methods compared include both regression models (accelerated failure time (AFT) and Cox proportional hazard models (Cox PH)) and data mining techniques (regression trees, Bayesian additive regression trees (BART), and multivariate additive regression splines). We then validate our models against two other hurricanes. Our results indicate that BART yields the best prediction accuracy and that it is possible to predict outage durations with reasonable accuracy.


Asunto(s)
Tormentas Ciclónicas , Suministros de Energía Eléctrica , Electricidad , Modelos Teóricos
9.
Risk Anal ; 30(12): 1744-52, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21039701

RESUMEN

Hurricanes frequently cause damage to electric power systems in the United States, leading to widespread and prolonged loss of electric service. Restoring service quickly requires the use of repair crews and materials that must be requested, at considerable cost, prior to the storm. U.S. utilities have struggled to strike a good balance between over- and underpreparation largely because of a lack of methods for rigorously estimating the impacts of an approaching hurricane on their systems. Previous work developed methods for estimating the risk of power outages and customer loss of power, with an outage defined as nontransitory activation of a protective device. In this article, we move beyond these previous approaches to directly estimate damage to the electric power system. Our approach is based on damage data from past storms together with regression and data mining techniques to estimate the number of utility poles that will need to be replaced. Because restoration times and resource needs are more closely tied to the number of poles and transformers that need to be replaced than to the number of outages, this pole-based assessment provides a much stronger basis for prestorm planning by utilities. Our results show that damage to poles during hurricanes can be assessed accurately, provided that adequate past damage data are available. However, the availability of data can, and currently often is, the limiting factor in developing these types of models in practice. Opportunities for further enhancing the damage data recorded during hurricanes are also discussed.


Asunto(s)
Tormentas Ciclónicas , Suministros de Energía Eléctrica , Almacenamiento y Recuperación de la Información , Estados Unidos
10.
Risk Anal ; 29(10): 1443-53, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19671101

RESUMEN

Electric power is a critical infrastructure service after hurricanes, and rapid restoration of electric power is important in order to minimize losses in the impacted areas. However, rapid restoration of electric power after a hurricane depends on obtaining the necessary resources, primarily repair crews and materials, before the hurricane makes landfall and then appropriately deploying these resources as soon as possible after the hurricane. This, in turn, depends on having sound estimates of both the overall severity of the storm and the relative risk of power outages in different areas. Past studies have developed statistical, regression-based approaches for estimating the number of power outages in advance of an approaching hurricane. However, these approaches have either not been applicable for future events or have had lower predictive accuracy than desired. This article shows that a different type of regression model, a generalized additive model (GAM), can outperform the types of models used previously. This is done by developing and validating a GAM based on power outage data during past hurricanes in the Gulf Coast region and comparing the results from this model to the previously used generalized linear models.


Asunto(s)
Tormentas Ciclónicas , Electricidad , Modelos Teóricos , Clima
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...