Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 12: 1419019, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39072260

RESUMEN

Human amylin (hIAPP) is found in the form of amyloid deposits within the pancreatic cells of nearly all patients diagnosed with type 2 diabetes mellitus (T2DM). However, rat amylin (rIAPP) and pramlintide - hIAPP analogs - are both non-toxic and non-amyloidogenic. Their primary sequences exhibit only slight variations in a few amino acid residues, primarily concentrated in the central region, spanning residues 20 to 29. This inspired us to study this fragment and investigate the impact on the aggregation properties of substituting residues within the central region of amylin and its analogs. Six fragments derived from amylin have undergone comprehensive testing against various metal ions by implementing a range of analytical techniques, including Nuclear Magnetic Resonance (NMR) spectroscopy, Thioflavin T (ThT) assays, Atomic Force Microscopy (AFM), and cytotoxicity assays. These methodologies serve to provide a thorough understanding of how the substitutions and interactions with metal ions impact the aggregation behavior of amylin and its analogs.

2.
Angew Chem Int Ed Engl ; 63(31): e202403647, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752721

RESUMEN

The discovery of safe platforms that can circumvent the endocytic pathway is of great significance for biological therapeutics that are usually degraded during endocytosis. Here we show that a self-assembled and dynamic macrocycle can passively diffuse through the cell membrane and deliver a broad range of biologics, including proteins, CRISPR Cas9, and ssDNA, directly to the cytosol while retaining their bioactivity. Cell-penetrating macrocycle CPM can be easily prepared from the room temperature condensation of diketopyrrolopyrrole lactams with diamines. We attribute the high cellular permeability of CPM to its amphiphilic nature and chameleonic properties. It adopts conformations that partially bury polar groups and expose hydrophobic side chains, thus self-assembling into micellar-like structures. Its superior fluorescence makes CPM trackable inside cells where it follows the endomembrane system. CPM outperformed commercial reagents for biologics delivery and showed high RNA knockdown efficiency of CRISPR Cas9. We envisage that this macrocycle will be an ideal starting point to design and synthesize biomimetic macrocyclic tags that can readily facilitate the interaction and uptake of biomolecules and overcome endosomal digestion.


Asunto(s)
Sistemas CRISPR-Cas , Citosol , Humanos , Citosol/metabolismo , ADN/química , ADN/metabolismo , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/metabolismo , Proteínas/química , Proteínas/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Células HeLa , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo
3.
ACS Omega ; 8(25): 22698-22707, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37396240

RESUMEN

The clinical development of the anticancer drug chlorambucil (CHL) is limited by its low solubility in water, poor bioavailability, and off-target toxicity. Besides, another constraint for monitoring intracellular drug delivery is the non-fluorescent nature of CHL. Nanocarriers based on block copolymers of poly(ethylene glycol)/poly(ethylene oxide) (PEG/PEO) and poly(ε-caprolactone) (PCL) are an elegant choice for drug delivery applications due to their high biocompatibility and inherent biodegradability properties. Here, we have designed and prepared block copolymer micelles (BCM) containing CHL (BCM-CHL) from a block copolymer having fluorescent probe rhodamine B (RhB) end-groups to achieve efficient drug delivery and intracellular imaging. For this purpose, the previously reported tetraphenylethylene (TPE)-containing poly(ethylene oxide)-b-poly(ε-caprolactone) [TPE-(PEO-b-PCL)2] triblock copolymer was conjugated with RhB by a feasible and effective post-polymerization modification method. In addition, the block copolymer was obtained by a facile and efficient synthetic strategy of one-pot block copolymerization. The amphiphilicity of the resulting block copolymer TPE-(PEO-b-PCL-RhB)2 led to the spontaneous formation of micelles (BCM) in aqueous media and successful encapsulation of the hydrophobic anticancer drug CHL (CHL-BCM). Dynamic light scattering and transmission electron microscopy analyses of BCM and CHL-BCM revealed a favorable size (10-100 nm) for passive targeting of tumor tissues via the enhanced permeability and retention effect. The fluorescence emission spectrum (λex 315 nm) of BCM demonstrated Förster resonance energy transfer between TPE aggregates (donor) and RhB (acceptor). On the other hand, CHL-BCM revealed TPE monomer emission, which may be attributed to the π-π stacking interaction between TPE and CHL molecules. The in vitro drug release profile showed that CHL-BCM exhibits drug release in a sustained manner over 48 h. A cytotoxicity study proved the biocompatibility of BCM, while CHL-BCM revealed significant toxicity to cervical (HeLa) cancer cells. The inherent fluorescence of RhB in the block copolymer offered an opportunity to directly monitor the cellular uptake of the micelles by confocal laser scanning microscopy imaging. These results demonstrate the potential of these block copolymers as drug nanocarriers and as bioimaging probes for theranostic applications.

4.
Nano Lett ; 23(11): 4732-4740, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37272543

RESUMEN

Sustainable and precise fortification practices are necessary to ensure food security for the increasing human population. Precision agriculture aims to minimize the use of fertilizers and pesticides by developing smart materials for real-life agricultural practices. Here, we show that biomimetic mineralization can be efficiently employed to encapsulate and controllably release plant biostimulants (MiZax-3) to improve the quality and yield of capsicum (Capsicum annum) crops in field experiments. ZIF-8 encapsulation of MiZax-3 (MiZIFs) could significantly enhance its stability up to around 679 times (6p value = 0.0072) at field conditions. Our results demonstrate that the coordinating Zn ions and the MiZax-3 play a vital role in improving Zn content in the produced fruits by 2-fold, which is the first report of this nature on Zn content in fruits. We envision this platform as a starting point to investigate other biocompatible coordination-based platforms for micronutrient delivery in precision agriculture.


Asunto(s)
Micronutrientes , Oligoelementos , Humanos , Biomimética , Agricultura/métodos , Productos Agrícolas
5.
Angew Chem Int Ed Engl ; 62(25): e202302840, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37073945

RESUMEN

Effective immobilization and delivery of genetic materials is at the forefront of biological and medical research directed toward tackling scientific challenges such as gene therapy and cancer treatment. Herein we present a biologically inspired hydrogen-bonded zinc adeninate framework (ZAF) consisting of zinc adeninate macrocycles that self-assemble into a 3D framework through adenine-adenine interactions. ZAF can efficiently immobilize DNAzyme with full protection against enzyme degradation and physiological conditions until it is successfully delivered into the nucleus. As compared to zeolitic imidazolate frameworks (ZIFs), ZAFs are twofold more biocompatible with a significant loading efficiency of 96 %. Overall, our design paves the way for expanding functional hydrogen-bonding-based systems as potential platforms for the loading and delivery of biologics.


Asunto(s)
ADN Catalítico , Zinc , Adenina , Hidrógeno
6.
JACS Au ; 2(3): 623-630, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35373199

RESUMEN

Biologically derived metal-organic frameworks (Bio-MOFs) are significant, as they can be used in cutting-edge biomedical applications such as targeted gene delivery. Herein, adenine (Ade) and unnatural amino acids coordinate with Zn2+ to produce biocompatible frameworks, KBM-1 and KBM-2, with extremely defined porous channels. They feature an accessible Watson-Crick Ade face that is available for further hydrogen bonding and can load single-stranded DNA (ssDNA) with 13 and 41% efficiency for KBM-1 and KBM-2, respectively. Treatment of these frameworks with thymine (Thy), as a competitive guest for base pairing with the Ade open sites, led to more than 50% reduction of ssDNA loading. Moreover, KBM-2 loaded Thy-rich ssDNA more efficiently than Thy-free ssDNA. These findings support the role of the Thy-Ade base pairing in promoting ssDNA loading. Furthermore, theoretical calculations using the self-consistent charge density functional tight-binding (SCC-DFTB) method verified the role of hydrogen bonding and van der Waals type interactions in this host-guest interface. KBM-1 and KBM-2 can protect ssDNA from enzymatic degradation and release it at acidic pH. Most importantly, these biocompatible frameworks can efficiently deliver genetic cargo with retained activity to the cell nucleus. We envisage that this class of Bio-MOFs can find immediate applicability as biomimics for sensing, stabilizing, and delivering genetic materials.

7.
Biomacromolecules ; 22(12): 5243-5255, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34852198

RESUMEN

Fluorescent drug delivery systems have received increasing attention in cancer therapy because they combine drug delivery and bioimaging into a single platform. For example, polymers with aggregation-induced emission (AIE) fluorophores, such as tetraphenylethylene (TPE), have emerged as an elegant choice for drug delivery/bioimaging applications. In this work, we report one-pot sequential organocatalytic ring-opening polymerization of ε-caprolactone (CL) and ethylene oxide (EO) using TPE-(OH)2 as a difunctional initiator, in the presence of a t-BuP2/TEB Lewis pair (catalyst), in THF at room temperature. Two well-defined triblock copolymers with inverse block sequences, TPE-(PCL-b-PEO)2 and TPE-(PEO-b-PCL)2, were synthesized by altering the sequential addition of CL and EO. The physicochemical properties, including hydrodynamic diameter, morphology, and AIE properties of the synthesized amphiphilic triblock copolymers were investigated in aqueous media. The block copolymer micelles were loaded with anticancer drugs doxorubicin and curcumin to serve as drug delivery vehicles. In vitro studies revealed the accelerated drug release at lower pH (5.5), which mimics the tumor microenvironment, different from the physiological pH (7.4). In vitro cytotoxicity studies demonstrated that the neat block copolymer micelles are biocompatible, while drug-loaded micelles exhibited a significant cytotoxic effect in cancer cells. Cellular uptake, examined by confocal laser scanning microscopy, showed that the block copolymer micelles were rapidly internalized by the cells with simultaneous emission of TPE fluorophore. These results suggest that these triblock copolymers can be utilized for intracellular bioimaging.


Asunto(s)
Sistemas de Liberación de Medicamentos , Micelas , Doxorrubicina/química , Doxorrubicina/farmacología , Portadores de Fármacos/química , Liberación de Fármacos , Polietilenglicoles/química , Polímeros/química
8.
J Mater Chem B ; 9(30): 5925-5934, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34259304

RESUMEN

Metal organic frameworks (MOFs) are a unique class of smart hybrid materials that have recently attracted significant interest for catalysis, separation and biomedical applications. Different strategies have been developed to overcome the limitations of MOFs for bio-applications in order to produce a system with high biocompatibility and biodegradability. In this review, we outline the chemical and physical factors that dictate the biocompatibility and biodegradability characteristics of MOFs including the nature of the metal ions and organic ligands, size, surface properties and colloidal stability. This review includes the in vitro biodegradation and in vivo biodistribution studies of MOFs to better understand their pharmacokinetics, organ toxicity and immune response. Such studies can guide the design of future bio-friendly systems that bring us closer to safely translating these platforms into the pharmaceutical consumer market.


Asunto(s)
Materiales Biocompatibles/metabolismo , Investigación Biomédica , Estructuras Metalorgánicas/metabolismo , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacocinética , Humanos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacocinética
9.
Sci Adv ; 7(4)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523955

RESUMEN

The major impediments to the implementation of cancer immunotherapies are the sustained immune effect and the targeted delivery of these therapeutics, as they have life-threatening adverse effects. In this work, biomimetic metal-organic frameworks [zeolitic imidazolate frameworks (ZIFs)] are used for the controlled delivery of nivolumab (NV), a monoclonal antibody checkpoint inhibitor that was U.S. Food and Drug Administration-approved back in 2014. The sustained release behavior of NV-ZIF has shown a higher efficacy than the naked NV to activate T cells in hematological malignancies. The system was further modified by coating NV-ZIF with cancer cell membrane to enable tumor-specific targeted delivery while treating solid tumors. We envisage that such a biocompatible and biodegradable immunotherapeutic delivery system may promote the development and the translation of hybrid superstructures into smart and personalized delivery platforms.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Zeolitas , Biomimética , Humanos , Inmunoterapia , Estructuras Metalorgánicas/química , Neoplasias/tratamiento farmacológico , Estados Unidos , Zeolitas/química
10.
J Am Chem Soc ; 142(4): 1715-1720, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31931564

RESUMEN

Effective and cell-type-specific delivery of CRISPR/Cas9 gene editing elements remains a challenging open problem. Here we report the development of biomimetic cancer cell coated zeolitic imidazolate frameworks (ZIFs) for targeted and cell-specific delivery of this genome editing machinery. Coating ZIF-8 that is encapsulating CRISPR/Cas9 (CC-ZIF) with a cancer cell membrane resulted in the uniformly covered C3-ZIF(cell membrane type). Incubation of C3-ZIFMCF with MCF-7, HeLa, HDFn, and aTC cell lines showed the highest uptake by MCF-7 cells and negligible uptake by the healthy cells (i.e., HDFn and aTC). As to genome editing, a 3-fold repression in the EGFP expression was observed when MCF-7 were transfected with C3-ZIFMCF compared to 1-fold repression in the EGFP expression when MCF-7 were transfected with C3-ZIFHELA. In vivo testing confirmed the selectivity of C3-ZIFMCF to accumulate in MCF-7 tumor cells. This supports the ability of this biomimetic approach to match the needs of cell-specific targeting, which is unquestionably the most critical step in the future translation of genome editing technologies.


Asunto(s)
Biomimética , Sistemas CRISPR-Cas , Estructuras Metalorgánicas/química , Animales , Células HeLa , Xenoinjertos , Humanos , Células MCF-7 , Ratones
11.
Chem Sci ; 11(41): 11280-11284, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34094369

RESUMEN

Assembling well-defined MOF superstructures remains challenging as it requires easily removable hard templates or readily available immiscible solutions for an emulsion-based soft-template approach. In this work, a single-step emulsion-free soft templating approach is reported to spontaneously prepare hollow ZIF-8 and ZIF-67 colloidosomes with no further purification. These superstructures can load different enzymes regardless of the size and charge with a high encapsulation efficiency of 99%. We envisage that this work will expand the repertoires of MOF superstructures by the judicious selection of precursors and the reaction medium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA