Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(32): 21712-21726, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39099433

RESUMEN

An investigation into the corrosion inhibition properties of L-tryptophan (TP) and 5-hydroxy-L-tryptophan (5-OH-TP) for mild steel in a 1.0 M HCl acidic medium was conducted using experimental and theoretical methods. Results obtained from polarization curve measurements reveal that TP and 5-OH-TP are effective mixed-type inhibitors, exhibiting the highest inhibition efficiencies of 91.22% and 94.05%, respectively, at a temperature of 293 K and a concentration of 10-2 M. However, their inhibition efficiencies gradually decline with increasing temperature, reaching the lowest values of 70.65% for TP and 73.55% for 5-OH-TP at a concentration of 10-4 M and a temperature of 323 K. The adsorption of TP and 5-OH-TP on the steel surface follows the Langmuir isotherm, suggesting monolayer adsorption. Electrochemical impedance spectroscopy analysis indicates that the adsorbed inhibitors form a protective film, effectively shielding the steel from corrosive agents in the solution. Notably, 5-OH-TP consistently exhibits superior inhibition efficiency compared to TP, attributed to the presence of polar OH groups that facilitate stronger bonding of the inhibitor molecule with the metal surface. Quantum chemical parameters and molecular dynamics simulations further confirm the superior corrosion inhibition ability of 5-OH-TP over TP in acidic environments. In particular, the binding energies of protonated TP at the N3 position and 5-OH-TP at the N4 position are 556.40 and 579.27 kJ mol-1, respectively.

2.
ACS Omega ; 9(22): 24071-24081, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38854538

RESUMEN

An assessment of the free radical scavenging potential of 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol (AT) and 4-amino-5-(4-pyridyl)-4H-1,2,4-triazole-3-thiol (AP) involved a combination of experimental methodologies and theoretical calculations. In the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) assay, AT exhibited an heightened efficacy in scavenging DPPH• radicals compared to AP. This was evidenced by the notably lower IC50DPPH value observed for AT (1.3 × 10-3 ± 0.2 × 10-3 M) in comparison to AP (2.2 × 10-3 ± 0.1 × 10-3 M). Similarly, in the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS• +) test, AT exhibited superior ability in neutralizing ABTS•+ free radical cations compared to AP, with the computed IC50ABTS values of 4.7 × 10-5 ± 0.1 × 10-5 M for AT and 5.5 × 10-5 ± 0.2 × 10-5 M for AP. Density functional theory served as the tool for evaluating the correlation between structural attributes and the antioxidant efficacy of the studied molecules. The findings highlighted the flexibility of hydrogen atoms within NH and NH2 groups to nucleophilic attacks, indicative of their pivotal role in the scavenging mechanism. Furthermore, investigations into the interactions between AT and AP with the free radical HOO• revealed predominantly the reaction via the hydrogen atom transfer mechanism. Both experimental observations and theoretical deductions collectively affirmed AT's superior free radical scavenging ability over AP in the gas phase and ethanol.

3.
ACS Omega ; 4(11): 14478-14489, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31528801

RESUMEN

The corrosion inhibition ability of 1-phenyl-2-thiourea (PTU) and 1,3-diisopropyl-2-thiourea (ITU) for mild steel in 1.0 M hydrochloric was studied by using the potentiodynamic polarization (PDP) curves, electrochemical impedance spectroscopy (EIS), quantum chemical calculations, and Monte Carlo simulations. Conditions which influence the capacity of corrosion inhibition including concentration, structure of thiourea derivatives, and environment temperature were taken into investigation. The highest inhibition efficiencies of PTU and ITU are 98.96 and 92.65% at a concentration of 5 × 10-3 M at 60 °C. In fact, corrosion inhibition ability of PTU is better than that of ITU in acidic solution due to the presence of the benzene ring of PTU. EIS data are very well correlated with PDP results. In addition, the higher inhibition performance with enhancing temperature and the values of ΔG 0 indicated that PTU and ITU participate in chemical adsorption on the metal surface. Their adsorption process on the metal surface follow the Langmuir adsorption isotherm. Both experimental and theoretical results in this study are in good agreement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA