Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 13(640)2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665411

RESUMEN

Spontaneous Ca2+ signaling from the InsP3R intracellular Ca2+ release channel to mitochondria is essential for optimal oxidative phosphorylation (OXPHOS) and ATP production. In cells with defective OXPHOS, reductive carboxylation replaces oxidative metabolism to maintain amounts of reducing equivalents and metabolic precursors. To investigate the role of mitochondrial Ca2+ uptake in regulating bioenergetics in these cells, we used OXPHOS-competent and OXPHOS-defective cells. Inhibition of InsP3R activity or mitochondrial Ca2+ uptake increased α-ketoglutarate (αKG) abundance and the NAD+/NADH ratio, indicating that constitutive endoplasmic reticulum (ER)-to-mitochondria Ca2+ transfer promoted optimal αKG dehydrogenase (αKGDH) activity. Reducing mitochondrial Ca2+ inhibited αKGDH activity and increased NAD+, which induced SIRT1-dependent autophagy in both OXPHOS-competent and OXPHOS-defective cells. Whereas autophagic flux in OXPHOS-competent cells promoted cell survival, it was impaired in OXPHOS-defective cells because of inhibition of autophagosome-lysosome fusion. Inhibition of αKGDH and impaired autophagic flux in OXPHOS-defective cells resulted in pronounced cell death in response to interruption of constitutive flux of Ca2+ from ER to mitochondria. These results demonstrate that mitochondria play a fundamental role in maintaining bioenergetic homeostasis of both OXPHOS-competent and OXPHOS-defective cells, with Ca2+ regulation of αKGDH activity playing a pivotal role. Inhibition of ER-to-mitochondria Ca2+ transfer may represent a general therapeutic strategy against cancer cells regardless of their OXPHOS status.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Fosforilación Oxidativa , Línea Celular Tumoral , Supervivencia Celular , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Humanos , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología
2.
Mitochondrion ; 49: 73-82, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31310854

RESUMEN

Cytosolic calcium (cCa2+) entry into mitochondria is facilitated by the mitochondrial membrane potential (ΔΨm), an electrochemical gradient generated by the electron transport chain (ETC). Is has been assumed that as long as mutations that affect the ETC do not affect the ΔΨm, the mitochondrial Ca2+ (mCa2+) homeostasis remains normal. We show that knockdown of NDUFAF3 and SDHB reduce ETC activity altering mCa2+ efflux and influx rates while ΔΨm remains intact. Shifting the equilibrium toward lower [Ca2+]m accumulation renders cells resistant to death. Our findings reveal an unexpected relationship between complex I and II with the mCa2+ homeostasis independent of ΔΨm.


Asunto(s)
Calcio/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Homeostasis , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Succinato Deshidrogenasa/metabolismo , Complejo I de Transporte de Electrón/genética , Humanos , Células MCF-7 , Potencial de la Membrana Mitocondrial/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Succinato Deshidrogenasa/genética
3.
Sci Rep ; 8(1): 13190, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181620

RESUMEN

Highly malignant triple-negative breast cancer (TNBC) cells rely mostly on glycolysis to maintain cellular homeostasis; however, mitochondria are still required for migration and metastasis. Taking advantage of the metabolic flexibility of TNBC MDA-MB-231 cells to generate subpopulations with glycolytic or oxidative phenotypes, we screened phenolic compounds containing an ortho-carbonyl group with mitochondrial activity and identified a bromoalkyl-ester of hydroquinone named FR58P1a, as a mitochondrial metabolism-affecting compound that uncouples OXPHOS through a protonophoric mechanism. In contrast to well-known protonophore uncoupler FCCP, FR58P1a does not depolarize the plasma membrane and its effect on the mitochondrial membrane potential and bioenergetics is moderate suggesting a mild uncoupling of OXPHOS. FR58P1a activates AMPK in a Sirt1-dependent fashion. Although the activation of Sirt1/AMPK axis by FR58P1a has a cyto-protective role, selectively inhibits fibronectin-dependent adhesion and migration in TNBC cells but not in non-tumoral MCF10A cells by decreasing ß1-integrin at the cell surface. Prolonged exposure to FR58P1a triggers a metabolic reprograming in TNBC cells characterized by down-regulation of OXPHOS-related genes that promote cell survival but comprise their ability to migrate. Taken together, our results show that TNBC cell migration is susceptible to mitochondrial alterations induced by small molecules as FR58P1a, which may have therapeutic implications.


Asunto(s)
Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Hidroquinonas/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular Tumoral , Metabolismo Energético/efectos de los fármacos , Femenino , Humanos , Hidroquinonas/química , Integrina beta1/metabolismo , Sirtuina 1/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...