Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8206, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081804

RESUMEN

The formed 4He (α) clusters consisting of two neutrons and two protons can be a building block in light nuclear systems. Intriguingly, these alpha clusters could potentially form alpha condensate states within the nuclear system. The Hoyle state at 7.65 MeV in 12C, which plays an essential role in stellar nucleosynthesis, is now considered to be a phase transition, namely the 3α Bose-Einstein condensate. Confirming the existence of Hoyle-analog states in Nα nuclei (N > 3) remains a major challenge. Here we show microscopic five-body calculations for the 20Ne nucleus. We find that one excited 0+ state has a distinct gas-like characteristic and represents the condensate state. Identifying the 5α condensate state is an important step in establishing the concept of α condensation in nuclear fermion systems.

2.
Phys Rev E ; 105(6-2): 065204, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35854489

RESUMEN

We investigate the thermopower and Lorenz number of hydrogen with Kohn-Sham density functional theory (DFT) across the plasma plane toward the near-classical limit, i.e., weakly degenerate and weakly coupled states. Our results are in concordance with certain limiting values for the Lorentz plasma, a model system which only considers electron-ion scattering. Thereby, we clearly show that the widely used method of calculating transport properties via the Kubo-Greenwood (KG) formalism does not capture electron-electron scattering processes. Our discussion also addresses the inadequateness of assuming a Drude-like frequency behavior for the conductivity of nondegenerate plasmas by revisiting the relaxation time approximation within kinetic theory.

3.
Phys Rev E ; 99(3-1): 033201, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30999524

RESUMEN

New facilities explore warm dense matter (WDM) at conditions with extreme densities (exceeding ten times condensed matter densities) so that electrons are degenerate even at temperatures of 10-100 eV. Whereas in the nondegenerate region correlation effects such as Debye screening are relevant for the ionization potential depression (IPD), new effects have to be considered in degenerate plasmas. In addition to the Fock shift of the self-energies, the bound-state Pauli blocking becomes important with increasing density. Standard approaches to IPD such as Stewart-Pyatt and widely used opacity tables (e.g., OPAL) do not contain Pauli blocking effects for bound states. The consideration of degeneracy effects leads to a reduction of the ionization potential and to a higher degree of ionization. As an example, we present calculations for the ionization degree of carbon plasmas at T = 100 eV and extreme densities up to 40 g/cm^{3}, which are relevant to experiments that are currently scheduled at the National Ignition Facility.

4.
Phys Rev E ; 96(1-1): 013202, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29347154

RESUMEN

The properties of a bound electron system immersed in a plasma environment are strongly modified by the surrounding plasma. The modification of an essential quantity, the ionization energy, is described by the electronic and ionic self-energies, including dynamical screening within the framework of the quantum statistical theory. Introducing the ionic dynamical structure factor as the indicator for the ionic microfield, we demonstrate that ionic correlations and fluctuations play a critical role in determining the ionization potential depression. This is, in particular, true for mixtures of different ions with large mass and charge asymmetry. The ionization potential depression is calculated for dense aluminum plasmas as well as for a CH plasma and compared to the experimental data and more phenomenological approaches used so far.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(3 Pt 2): 036406, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22060512

RESUMEN

The dynamical response of metallic clusters up to 10(3) atoms is investigated using the restricted molecular dynamics simulations scheme. Exemplarily, a sodium like material is considered. Correlation functions are evaluated to investigate the spatial structure of collective electron excitations and the optical response of laser-excited clusters. In particular, the spectrum of bilocal correlation functions shows resonances representing different modes of collective excitations inside the nano plasma. The spatial structure, the resonance energy, and the width of the eigenmodes have been investigated for various values of electron density, temperature, cluster size, and ionization degree. Comparison with bulk properties is performed and the dispersion relation of collective excitations is discussed.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(2 Pt 2): 026405, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20365663

RESUMEN

The dynamic structure factor, which determines the Thomson scattering spectrum, is calculated via an extended Mermin approach. It incorporates the dynamical collision frequency as well as the local-field correction factor. This allows to study systematically the impact of electron-ion collisions as well as electron-electron correlations due to degeneracy and short-range interaction on the characteristics of the Thomson scattering signal. As such, the plasmon dispersion and damping width is calculated for a two-component plasma, where the electron subsystem is completely degenerate. Strong deviations of the plasmon resonance position due to the electron-electron correlations are observed at increasing Brueckner parameters r(s). These results are of paramount importance for the interpretation of collective Thomson scattering spectra, as the determination of the free electron density from the plasmon resonance position requires a precise theory of the plasmon dispersion. Implications due to different approximations for the electron-electron correlation, i.e., different forms of the one-component local-field correction, are discussed.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(5 Pt 2): 056405, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16803048

RESUMEN

Shift and broadening of isolated neutral helium lines 7281 angstroms (2(1)P-3(1)S), 7065 angstroms (2(3)P-3(3)S), 6678 angstroms (2(1)P-3(1)D), 5048 angstroms (2(1)P-4(1)S), 4922 angstroms (2(1)P-4(1)D), and 4713 angstroms (2(3)P-4(3)S) in a dense plasma are investigated. Based on a quantum statistical theory, the electronic contributions to the shift and width are considered, using the method of thermodynamic Green functions. Dynamic screening of the electron-atom interaction is included. Compared to the width, the electronic shift is more affected by dynamical screening. This effect increases at high density. A cut-off procedure for strong collisions is used. The contribution of the ions is taken into account in a quasi-static approximation, with both the quadratic Stark effect and the quadrupole interaction included. The results for shift and width agree well with the available experimental and theoretical data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA