Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Mol Phylogenet Evol ; 150: 106845, 2020 09.
Article En | MEDLINE | ID: mdl-32360706

The subclass Corallinophycidae is the only group of red algae characterized by the presence of calcite crystals in their cell walls. Except for the Rhodogorgonales, the remaining orders - collectively called corallines - are diverse and widely distributed, having calcified cell walls and highly variable morphology. Corallines constitute the group with the richest fossil record among marine algae. In the present study, we investigate the evolutionary history of the subclass Corallinophycidae and provide a time-calibrated phylogeny to date the radiation of the crown group and its main lineages. We use a multi-locus dataset with an extensive taxon sampling and comprehensive collection of fossil records, carefully assigned to corallines, to reconstruct a time-calibrated phylogeny of this subclass. Our molecular clock analyses suggest that the onset of crown group diversification of Corallinophycidae started in the Lower Jurassic and sped up in the Lower Cretaceous. The divergence time of the oldest order Sporolithales is estimated in the Lower Cretaceous followed by the remaining orders. We discuss the long period of more than 300 million years between the early Paleozoic records attributed to the stem group of Corallinophycidae and the radiation of the crown group. Our inferred phylogeny yields three highly-supported suprageneric lineages for the order Corallinales; we confirm the family Mastophoraceae and amend circumscription of the families Corallinaceae and Lithophyllaceae. These three families are distinguished by a combination of vegetative and reproductive features. In light of the phylogeny, we discuss the evolutionary trends of eleven morphological characters. In addition, we also highlight homoplasious characters and selected autapomorphies emerging in particular taxa.


Rhodophyta/classification , Bayes Theorem , Biological Evolution , Cell Wall/chemistry , DNA, Plant/chemistry , DNA, Plant/metabolism , Fossils , Genetic Linkage , Phylogeny , Rhodophyta/genetics
2.
J Phycol ; 55(1): 134-145, 2019 02.
Article En | MEDLINE | ID: mdl-30317649

Adeylithon gen. nov. with one species, A. bosencei sp. nov., belonging to the subfamily Hydrolithoideae is described from Pacific coral reefs based on psbA sequences and morpho-anatomy. In contrast with Hydrolithon, A. bosencei showed layers of large polygonal "cells," which resulted from extensive lateral fusions of perithallial cells, interspersed among layers of vegetative cells. This anatomical feature is shared with the fossil Aethesolithon, but lacking DNA sequences from the fossils and the fragmentary nature of Aethesolithon type material, we cannot ascertain if Adeylithon and Aethesolithon are congeneric. Morpho-anatomical features of A. bosencei were generally congruent with diagnostic features of the subfamily Hydrolithoideae: (i) outline of cell filaments entirely lost in large portions due to pervasive and extensive cell fusions, (ii) trichocytes not arranged in tightly packed horizontal fields, (iii) basal layer without palisade cells, and (iv) cells lining the canal pore oriented more or less perpendicular to roof surface and not protruding into the canal. However, it showed a predominant monomerous thallus organization and trichocytes were disposed in large pustulate, horizontal fields, although they were not tightly packed and did not become distinctly buried in the thallus. Only mature tetrasporangial conceptacles were observed, therefore the type of conceptacle roof formation remained undetermined. Adeylithon bosencei occurs on shallow coral reefs, in Australia, Papua New Guinea, and South Pacific islands (Fiji, Vanuatu). Fossil Aethesolithon is considered an important component of shallow coral reefs since the Miocene; fossil records showed a broad Indo-Pacific distribution, but a long-term process of range contraction in the last 2.6 million years, resulting in an overlap with the distribution of the extant Adeylithon. While the congeneric nature of extant and fossil taxa remained uncertain, similarities in morpho-anatomy, habitat, and distribution may indicate that both taxa likely shared a common ancestor.


Fossils , Rhodophyta , Australia , Coral Reefs , Phylogeny
3.
J Phycol ; 53(3): 567-576, 2017 06.
Article En | MEDLINE | ID: mdl-28191634

The temporal dimension of the most recent Corallinaceae (order Corallinales) phylogeny was presented here, based on first occurrence time estimates from the fossil record. Calibration of the molecular clock of the genetic marker SSU entailed a separation of Corallinales from Hapalidiales in the Albian (Early Cretaceous ~105 mya). Neither the calibration nor the fossil record resolved the succession of appearance of the first three emerging subfamilies: Mastophoroideae, Corallinoideae, and Neogoniolithoideae. The development of the tetra/bisporangial conceptacle roofs by filaments surrounding and interspersed among the sporangial initials was an evolutionary novelty emerging at the Cretaceous-Paleogene boundary (~66 mya). This novelty was shared by the subfamilies Hydrolithoideae, Metagoniolithoideae, and Lithophylloideae, which diverged in the early Paleogene. Subclades within the Metagoniolithoideae and Lithophylloideae diversified in the late Oligocene-middle Miocene (~28-12 mya). The most common reef corallinaceans (Hydrolithon, Porolithon, Harveylithon, "Pneophyllum" conicum, and subclades within Lithophylloideae) appeared in this interval in the Indo-Australian Archipelago.


Biological Evolution , Rhodophyta/genetics , Algal Proteins/genetics , Evolution, Molecular , Fossils , Phylogeny , RNA, Algal/genetics , Rhodophyta/classification
4.
J Phycol ; 52(3): 412-31, 2016 06.
Article En | MEDLINE | ID: mdl-27273534

A new, more complete, five-marker (SSU, LSU, psbA, COI, 23S) molecular phylogeny of the family Corallinaceae, order Corallinales, shows a paraphyletic grouping of seven well-supported monophyletic clades. The taxonomic implications included the amendment of two subfamilies, Neogoniolithoideae and Metagoniolithoideae, and the rejection of Porolithoideae as an independent subfamily. Metagoniolithoideae contained Harveylithon gen. nov., with H. rupestre comb. nov. as the generitype, and H. canariense stat. nov., H. munitum comb. nov., and H. samoënse comb. nov. Spongites and Pneophyllum belonged to separate clades. The subfamily Neogoniolithoideae included the generitype of Spongites, S. fruticulosus, for which an epitype was designated. Pneophyllum requires reassesment. The generitype of Hydrolithon, H. reinboldii, was a younger heterotypic synonym of H. boergesenii. The evolutionary novelty of the subfamilies Hydrolithoideae, Metagoniolithoideae, and Lithophylloideae was the development of tetra/bisporangial conceptacle roofs by filaments surrounding and interspersed among the sporangial initials.


Phylogeny , Rhodophyta/classification , Algal Proteins/genetics , Algal Proteins/metabolism , Coral Reefs , RNA, Algal/genetics , RNA, Algal/metabolism , Rhodophyta/genetics , Sequence Analysis, DNA
...