Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Nat Protoc ; 19(3): 928-959, 2024 Mar.
Article En | MEDLINE | ID: mdl-38238582

Integrating micro- and nanolasers into live cells, tissue cultures and small animals is an emerging and rapidly evolving technique that offers noninvasive interrogation and labeling with unprecedented information density. The bright and distinct spectra of such lasers make this approach particularly attractive for high-throughput applications requiring single-cell specificity, such as multiplexed cell tracking and intracellular biosensing. The implementation of these applications requires high-resolution, high-speed spectral readout and advanced analysis routines, which leads to unique technical challenges. Here, we present a modular approach consisting of two separate procedures. The first procedure instructs users on how to efficiently integrate different types of lasers into living cells, and the second procedure presents a workflow for obtaining intracellular lasing spectra with high spectral resolution and up to 125-kHz readout rate and starts from the construction of a custom hyperspectral confocal microscope. We provide guidance on running hyperspectral imaging routines for various experimental designs and recommend specific workflows for processing the resulting large data sets along with an open-source Python library of functions covering the analysis pipeline. We illustrate three applications including the rapid, large-volume mapping of absolute refractive index by using polystyrene microbead lasers, the intracellular sensing of cardiac contractility with polystyrene microbead lasers and long-term cell tracking by using semiconductor nanodisk lasers. Our sample preparation and imaging procedures require 2 days, and setting up the hyperspectral confocal microscope for microlaser characterization requires <2 weeks to complete for users with limited experience in optical and software engineering.


Diagnostic Imaging , Polystyrenes , Animals , Software , Lasers
2.
J Virol ; 97(6): e0026223, 2023 06 29.
Article En | MEDLINE | ID: mdl-37289055

Herpes simplex virus 1 (HSV-1) must overcome epidermal barriers to reach its receptors on keratinocytes and initiate infection in human skin. The cell-adhesion molecule nectin-1, which is expressed in human epidermis, acts as an efficient receptor for HSV-1 but is not within reach of the virus upon exposure of human skin under nonpathological conditions. Atopic dermatitis skin, however, can provide an entry portal for HSV-1 emphasizing the role of impaired barrier functions. Here, we explored how epidermal barriers impact HSV-1 invasion in human epidermis and influence the accessibility of nectin-1 for the virus. Using human epidermal equivalents, we observed a correlation of the number of infected cells with tight-junction formation, suggesting that mature tight junctions prior to formation of the stratum corneum prevent viral access to nectin-1. Consequently, impaired epidermal barriers driven by Th2-inflammatory cytokines interleukin 4 (IL-4) and IL-13 as well as the genetic predisposition of nonlesional atopic dermatitis keratinocytes correlated with enhanced infection supporting the impact of functional tight junctions for preventing infection in human epidermis. Comparable to E-cadherin, nectin-1 was distributed throughout the epidermal layers and localized just underneath the tight-junctions. While nectin-1 was evenly distributed on primary human keratinocytes in culture, the receptor was enriched at lateral surfaces of basal and suprabasal cells during differentiation. Nectin-1 showed no major redistribution in the thickened atopic dermatitis and IL-4/IL-13-treated human epidermis in which HSV-1 can invade. However, nectin-1 localization toward tight junction components changed, suggesting that defective tight-junction barriers make nectin-1 accessible for HSV-1 which enables facilitated viral penetration. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a widely distributed human pathogen which productively infects epithelia. The open question is which barriers of the highly protected epithelia must the virus overcome to reach its receptor nectin-1. Here, we used human epidermal equivalents to understand how physical barrier formation and nectin-1 distribution contribute to successful viral invasion. Inflammation-induced barrier defects led to facilitated viral penetration strengthening the role of functional tight-junctions in hindering viral access to nectin-1 that is localized just underneath tight junctions and distributed throughout all layers. We also found nectin-1 ubiquitously localized in the epidermis of atopic dermatitis and IL-4/IL-13-treated human skin implying that impaired tight-junctions in combination with a defective cornified layer allow the accessibility of nectin-1 to HSV-1. Our results support that successful invasion of HSV-1 in human skin relies on defective epidermal barriers, which not only include a dysfunctional cornified layer but also depend on impaired tight junctions.


Dermatitis, Atopic , Herpes Simplex , Herpesvirus 1, Human , Nectins , Tight Junctions , Humans , Dermatitis, Atopic/virology , Epidermis/virology , Herpesvirus 1, Human/physiology , Interleukin-13 , Interleukin-4
3.
Sci Rep ; 13(1): 7743, 2023 05 12.
Article En | MEDLINE | ID: mdl-37173371

Epithelia maintain a functional barrier during tissue turnover while facing varying mechanical stress. This maintenance requires both dynamic cell rearrangements driven by actomyosin-linked intercellular adherens junctions and ability to adapt to and resist extrinsic mechanical forces enabled by keratin filament-linked desmosomes. How these two systems crosstalk to coordinate cellular movement and mechanical resilience is not known. Here we show that in stratifying epithelia the polarity protein aPKCλ controls the reorganization from stress fibers to cortical actomyosin during differentiation and upward movement of cells. Without aPKC, stress fibers are retained resulting in increased contractile prestress. This aberrant stress is counterbalanced by reorganization and bundling of keratins, thereby increasing mechanical resilience. Inhibiting contractility in aPKCλ-/- cells restores normal cortical keratin networks but also normalizes resilience. Consistently, increasing contractile stress is sufficient to induce keratin bundling and enhance resilience, mimicking aPKC loss. In conclusion, our data indicate that keratins sense the contractile stress state of stratified epithelia and balance increased contractility by mounting a protective response to maintain tissue integrity.


Actomyosin , Signal Transduction , Actomyosin/metabolism , Epithelium/metabolism , Cytoskeleton/metabolism , Keratins/metabolism , Epithelial Cells/metabolism
4.
J Virol ; 96(17): e0086422, 2022 09 14.
Article En | MEDLINE | ID: mdl-35969080

To infect its human host, herpes simplex virus 1 (HSV-1) must overcome the protective barriers of skin and mucosa. Here, we addressed whether pathological skin conditions can facilitate viral entry via the skin surface and used ex vivo infection studies to explore viral invasion in atopic dermatitis (AD) skin characterized by disturbed barrier functions. Our focus was on the visualization of the onset of infection in single cells to determine the primary entry portals in the epidermis. After ex vivo infection of lesional AD skin, we observed infected cells in suprabasal layers indicating successful invasion in the epidermis via the skin surface which was never detected in control skin where only sample edges allowed viral access. The redistribution of filaggrin, loricrin, and tight-junction components in the lesional skin samples suggested multiple defective mechanical barriers. To dissect the parameters that contribute to HSV-1 invasion, we induced an AD-like phenotype by adding the Th2 cytokines interleukin 4 (IL-4) and IL-13 to healthy human skin samples. Strikingly, we detected infected cells in the epidermis, implying that the IL-4/IL-13-driven inflammation is sufficient to induce modifications allowing HSV-1 to penetrate the skin surface. In summary, not only did lesional AD skin facilitate HSV-1 penetration but IL-4/IL-13 responses alone allowed virus invasion. Our results suggest that the defective epidermal barriers of AD skin and the inflammation-induced altered barriers in healthy skin can make receptors accessible for HSV-1. IMPORTANCE Herpes simplex virus 1 (HSV-1) can target skin to establish primary infection in the epithelium. While the human skin provides effective barriers against viral invasion under healthy conditions, a prominent example of successful invasion is the disseminated HSV-1 infection in the skin of atopic dermatitis (AD) patients. AD is characterized by impaired epidermal barrier functions, chronic inflammation, and dysbiosis of skin microbiota. We addressed the initial invasion process of HSV-1 in atopic dermatitis skin to understand whether the physical barrier functions are sufficiently disturbed to allow the virus to invade skin and reach its receptors on skin cells. Our results demonstrate that HSV-1 can indeed penetrate and initiate infection in atopic dermatitis skin. Since treatment of skin with IL-4 and IL-13 already resulted in successful invasion, we assume that inflammation-induced barrier defects play an important role for the facilitated access of HSV-1 to its target cells.


Dermatitis, Atopic , Epidermis , Herpes Simplex , Herpesvirus 1, Human , Skin Diseases , Epidermis/pathology , Epidermis/virology , Herpes Simplex/pathology , Herpesvirus 1, Human/physiology , Humans , Inflammation , Interleukin-13 , Interleukin-4 , Skin/pathology , Skin/virology , Skin Diseases/virology , Tissue Culture Techniques
5.
Front Cell Dev Biol ; 10: 903696, 2022.
Article En | MEDLINE | ID: mdl-35686051

While classic cadherin-actin connections in adherens junctions (AJs) have ancient origins, intermediate filament (IF) linkages with desmosomal cadherins arose in vertebrate organisms. In this mini-review, we discuss how overlaying the IF-desmosome network onto the existing cadherin-actin network provided new opportunities to coordinate tissue mechanics with the positioning and function of chemical signaling mediators in the ErbB family of receptor tyrosine kinases. We focus in particular on the complex multi-layered outer covering of the skin, the epidermis, which serves essential barrier and stress sensing/responding functions in terrestrial vertebrates. We will review emerging data showing that desmosome-IF connections, AJ-actin interactions, ErbB family members, and membrane tension are all polarized across the multiple layers of the regenerating epidermis. Importantly, their integration generates differentiation-specific roles in each layer of the epidermis that dictate the form and function of the tissue. In the basal layer, the onset of the differentiation-specific desmosomal cadherin desmoglein 1 (Dsg1) dials down EGFR signaling while working with classic cadherins to remodel cortical actin cytoskeleton and decrease membrane tension to promote cell delamination. In the upper layers, Dsg1 and E-cadherin cooperate to maintain high tension and tune EGFR and ErbB2 activity to create the essential tight junction barrier. Our final outlook discusses the emerging appreciation that the desmosome-IF scaffold not only creates the architecture required for skin's physical barrier but also creates an immune barrier that keeps inflammation in check.

6.
J Invest Dermatol ; 142(12): 3282-3293, 2022 12.
Article En | MEDLINE | ID: mdl-35691363

Epidermolysis bullosa simplex (EBS) is a severe and potentially life-threatening disorder for which no adequate therapy exists. Most cases are caused by dominant sequence variations in keratin genes K5 or K14, leading to the formation of cytoplasmic keratin aggregates, profound keratinocyte fragility, and cytolysis. We hypothesized that pharmacological reduction of keratin aggregates, which compromise keratinocyte integrity, represents a viable strategy for the treatment of EBS. In this study, we show that the multikinase inhibitor PKC412, which is currently in clinical use for acute myeloid leukemia and advanced systemic mastocytosis, reduced keratin aggregation by 40% in patient-derived K14.R125C EBS-associated keratinocytes. Using a combination of epithelial shear stress assay and real-time impedance spectroscopy, we show that PKC412 restored intercellular adhesion. Molecularly, global phosphoproteomic analysis together with immunoblots using phosphoepitope-specific antibodies revealed that PKC412 treatment altered phosphorylated sites on keratins and desmoplakin. Thus, our data provide a proof of concept to repurpose existing drugs for the targeted treatment of EBS and showcase how one broad-range kinase inhibitor reduced keratin filament aggregation in patient-derived EBS keratinocytes and the fragility of EBS cell monolayers. Our study paves the way for a clinical trial using PKC412 for systemic or local application in patients with EBS.


Epidermolysis Bullosa Simplex , Humans , Epidermolysis Bullosa Simplex/genetics , Epidermolysis Bullosa Simplex/metabolism , Keratins/metabolism , Staurosporine/metabolism , Cytoskeleton/metabolism , Cytoskeletal Proteins/genetics , Keratin-14/genetics , Keratin-14/metabolism , Keratin-5/genetics , Keratin-5/metabolism , Mutation
7.
J Invest Dermatol ; 142(4): 1020-1025, 2022 04.
Article En | MEDLINE | ID: mdl-35051379

In this perspective, we focus on the skin epidermis and take you on a journey that highlights the adhesive- and cell shape‒changing adventures of a keratinocyte while it travels through the different layers of the epidermis, which is essential to make, maintain, and repair this barrier.


Adhesives , Keratinocytes , Cell Shape , Epidermal Cells , Epidermis
8.
Cancers (Basel) ; 13(8)2021 Apr 20.
Article En | MEDLINE | ID: mdl-33924099

Skin homeostasis results from balanced synthesis and degradation of the extracellular matrix in the dermis. Deletion of the proteolytic enzyme MMP14 in dermal fibroblasts (MMP14Sf-/-) leads to a fibrotic skin phenotype with the accumulation of collagen type I, resulting from impaired proteolysis. Here, we show that melanoma growth in these mouse fibrotic dermal samples was decreased, paralleled by reduced tumor cell proliferation and vessel density. Using atomic force microscopy, we found increased peritumoral matrix stiffness of early but not late melanomas in the absence of fibroblast-derived MMP14. However, total collagen levels were increased at late melanoma stages in MMP14Sf-/- mice compared to controls. In ex vivo invasion assays, melanoma cells formed smaller tumor islands in MMP14Sf-/- skin, indicating that MMP14-dependent matrix accumulation regulates tumor growth. In line with these data, in vitro melanoma cell growth was inhibited in high collagen 3D spheroids or stiff substrates. Most importantly, in vivo induction of fibrosis using bleomycin reduced melanoma tumor growth. In summary, we show that MMP14 expression in stromal fibroblasts regulates melanoma tumor progression by modifying the peritumoral matrix and point to collagen accumulation as a negative regulator of melanoma.

9.
Nature ; 584(7820): 196-198, 2020 08.
Article En | MEDLINE | ID: mdl-32728152
10.
Soft Matter ; 16(13): 3325-3337, 2020 Apr 01.
Article En | MEDLINE | ID: mdl-32196025

Surface tension governed by differential adhesion can drive fluid particle mixtures to sort into separate regions, i.e., demix. Does the same phenomenon occur in confluent biological tissues? We begin to answer this question for epithelial monolayers with a combination of theory via a vertex model and experiments on keratinocyte monolayers. Vertex models are distinct from particle models in that the interactions between the cells are shape-based, as opposed to distance-dependent. We investigate whether a disparity in cell shape or size alone is sufficient to drive demixing in bidisperse vertex model fluid mixtures. Surprisingly, we observe that both types of bidisperse systems robustly mix on large lengthscales. On the other hand, shape disparity generates slight demixing over a few cell diameters, a phenomenon we term micro-demixing. This result can be understood by examining the differential energy barriers for neighbor exchanges (T1 transitions). Experiments with mixtures of wild-type and E-cadherin-deficient keratinocytes on a substrate are consistent with the predicted phenomenon of micro-demixing, which biology may exploit to create subtle patterning. The robustness of mixing at large scales, however, suggests that despite some differences in cell shape and size, progenitor cells can readily mix throughout a developing tissue until acquiring means of recognizing cells of different types.


Cadherins/genetics , Cell Adhesion/drug effects , Keratinocytes/drug effects , Cadherins/chemistry , Cell Shape/drug effects , Cell Size/drug effects , Humans , Surface Properties
11.
Mol Biol Cell ; 29(19): 2317-2325, 2018 09 15.
Article En | MEDLINE | ID: mdl-30044710

The skin's epidermis is a multilayered epithelial tissue and the first line of defense against mechanical stress. Its barrier function depends on an integrated assembly and reorganization of cell-matrix and cell-cell junctions in the basal layer and on different intercellular junctions in suprabasal layers. However, how mechanical stress is recognized and which adhesive and cytoskeletal components are involved are poorly understood. Here, we subjected keratinocytes to cyclic stress in the presence or absence of intercellular junctions. Both states not only recognized but also responded to strain by reorienting actin filaments perpendicular to the applied force. Using different keratinocyte mutant strains that altered the mechanical link of the actin cytoskeleton to either cell-matrix or cell-cell junctions, we show that not only focal adhesions but also adherens junctions function as mechanosensitive elements in response to cyclic strain. Loss of paxillin or talin impaired focal adhesion formation and only affected mechanosensitivity in the absence but not presence of intercellular junctions. Further analysis revealed the adherens junction protein α-catenin as a main mechanosensor, with greatest sensitivity conferred on binding to vinculin. Our data reveal a mechanosensitive transition from cell-matrix to cell-cell adhesions on formation of keratinocyte monolayers with vinculin and α-catenin as vital players.


Adherens Junctions/metabolism , Cell Differentiation , Epithelial Cells/cytology , Epithelial Cells/metabolism , Focal Adhesions/metabolism , Actins/metabolism , Animals , Cell Communication , Mechanotransduction, Cellular , Mice , Paxillin/metabolism , Protein Binding , Stress Fibers/metabolism , Stress, Mechanical , Vinculin/metabolism , alpha Catenin/metabolism
12.
Elife ; 72018 07 12.
Article En | MEDLINE | ID: mdl-29999492

Desmosomes are adhesive junctions composed of two desmosomal cadherins: desmocollin (Dsc) and desmoglein (Dsg). Previous studies demonstrate that E-cadherin (Ecad), an adhesive protein that interacts in both trans (between opposing cells) and cis (on the same cell surface) conformations, facilitates desmosome assembly via an unknown mechanism. Here we use structure-function analysis to resolve the mechanistic roles of Ecad in desmosome formation. Using AFM force measurements, we demonstrate that Ecad interacts with isoform 2 of Dsg via a conserved Leu-175 on the Ecad cis binding interface. Super-resolution imaging reveals that Ecad is enriched in nascent desmosomes, supporting a role for Ecad in early desmosome assembly. Finally, confocal imaging demonstrates that desmosome assembly is initiated at sites of Ecad mediated adhesion, and that Ecad-L175 is required for efficient Dsg2 and desmoplakin recruitment to intercellular contacts. We propose that Ecad trans interactions at nascent cell-cell contacts initiate the recruitment of Dsg through direct cis interactions with Ecad which facilitates desmosome assembly.


Antigens, CD/metabolism , Cadherins/metabolism , Desmoglein 2/metabolism , Desmosomes/metabolism , Protein Multimerization , HEK293 Cells , Humans , Microscopy, Atomic Force , Microscopy, Confocal , Microscopy, Fluorescence , Protein Binding , Protein Interaction Mapping
13.
Article En | MEDLINE | ID: mdl-28893859

Cadherin-based adherens junctions (AJs) and desmosomes are crucial to couple intercellular adhesion to the actin or intermediate filament cytoskeletons, respectively. As such, these intercellular junctions are essential to provide not only integrity to epithelia and other tissues but also the mechanical machinery necessary to execute complex morphogenetic and homeostatic intercellular rearrangements. Moreover, these spatially defined junctions serve as signaling hubs that integrate mechanical and chemical pathways to coordinate tissue architecture with behavior. This review takes an evolutionary perspective on how the emergence of these two essential intercellular junctions at key points during the evolution of multicellular animals afforded metazoans with new opportunities to integrate adhesion, cytoskeletal dynamics, and signaling. We discuss known literature on cross-talk between the two junctions and, using the skin epidermis as an example, provide a model for how these two junctions function in concert to orchestrate tissue organization and function.


Adherens Junctions/physiology , Biological Evolution , Desmosomes/physiology , Signal Transduction/physiology , Adherens Junctions/genetics , Animals , Cell Polarity , Desmosomes/genetics , Epithelial Cells/physiology
14.
Nat Cell Biol ; 20(1): 69-80, 2018 01.
Article En | MEDLINE | ID: mdl-29230016

To establish and maintain organ structure and function, tissues need to balance stem cell proliferation and differentiation rates and coordinate cell fate with position. By quantifying and modelling tissue stress and deformation in the mammalian epidermis, we find that this balance is coordinated through local mechanical forces generated by cell division and delamination. Proliferation within the basal stem/progenitor layer, which displays features of a jammed, solid-like state, leads to crowding, thereby locally distorting cell shape and stress distribution. The resulting decrease in cortical tension and increased cell-cell adhesion trigger differentiation and subsequent delamination, reinstating basal cell layer density. After delamination, cells establish a high-tension state as they increase myosin II activity and convert to E-cadherin-dominated adhesion, thereby reinforcing the boundary between basal and suprabasal layers. Our results uncover how biomechanical signalling integrates single-cell behaviours to couple proliferation, cell fate and positioning to generate a multilayered tissue.


Cadherins/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Developmental , Mechanotransduction, Cellular , Myosin Type II/genetics , Animals , Biomechanical Phenomena , Cadherins/metabolism , Cell Adhesion , Cell Division , Cell Shape , Embryo, Mammalian , Epidermal Cells/cytology , Epidermal Cells/metabolism , Epidermis/embryology , Epidermis/metabolism , Humans , Intravital Microscopy , Mice , Mice, Inbred C57BL , Myosin Type II/metabolism , Primary Cell Culture
15.
Nat Commun ; 8(1): 1250, 2017 11 01.
Article En | MEDLINE | ID: mdl-29093447

Generation of a barrier in multi-layered epithelia like the epidermis requires restricted positioning of functional tight junctions (TJ) to the most suprabasal viable layer. This positioning necessitates tissue-level polarization of junctions and the cytoskeleton through unknown mechanisms. Using quantitative whole-mount imaging, genetic ablation, and traction force microscopy and atomic force microscopy, we find that ubiquitously localized E-cadherin coordinates tissue polarization of tension-bearing adherens junction (AJ) and F-actin organization to allow formation of an apical TJ network only in the uppermost viable layer. Molecularly, E-cadherin localizes and tunes EGFR activity and junctional tension to inhibit premature TJ complex formation in lower layers while promoting increased tension and TJ stability in the granular layer 2. In conclusion, our data identify an E-cadherin-dependent mechanical circuit that integrates adhesion, contractile forces and biochemical signaling to drive the polarized organization of junctional tension necessary to build an in vivo epithelial barrier.


Adherens Junctions/metabolism , Cadherins/metabolism , Epidermis/metabolism , ErbB Receptors/metabolism , Mechanotransduction, Cellular , Tight Junctions/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Adherens Junctions/ultrastructure , Animals , Cell Differentiation , Cell Proliferation , Epidermis/ultrastructure , Mice , Mice, Knockout , Microscopy, Atomic Force , Signal Transduction , Tight Junctions/ultrastructure
16.
J Exp Med ; 214(2): 339-358, 2017 02.
Article En | MEDLINE | ID: mdl-28096290

Melanoma, an aggressive skin malignancy with increasing lifetime risk, originates from melanocytes (MCs) that are in close contact with surrounding epidermal keratinocytes (KCs). How the epidermal microenvironment controls melanomagenesis remains poorly understood. In this study, we identify an unexpected non-cell autonomous role of epidermal polarity proteins, molecular determinants of cytoarchitecture, in malignant melanoma. Epidermal Par3 inactivation in mice promotes MC dedifferentiation, motility, and hyperplasia and, in an autochthonous melanoma model, results in increased tumor formation and lung metastasis. KC-specific Par3 loss up-regulates surface P-cadherin that is essential to promote MC proliferation and phenotypic switch toward dedifferentiation. In agreement, low epidermal PAR3 and high P-cadherin expression correlate with human melanoma progression, whereas elevated P-cadherin levels are associated with reduced survival of melanoma patients, implying that this mechanism also drives human disease. Collectively, our data show that reduced KC Par3 function fosters a permissive P-cadherin-dependent niche for MC transformation, invasion, and metastasis. This reveals a previously unrecognized extrinsic tumor-suppressive mechanism, whereby epithelial polarity proteins dictate the cytoarchitecture and fate of other tissue-resident cells to suppress their malignant outgrowth.


Cell Cycle Proteins/physiology , Epidermis/chemistry , Melanoma/prevention & control , Membrane Proteins/physiology , Tumor Suppressor Proteins/physiology , Adaptor Proteins, Signal Transducing , Animals , Cadherins/analysis , Cell Communication , Cell Movement , Cell Proliferation , Humans , Melanocytes/pathology , Melanoma/pathology , Mice , Mice, Inbred C57BL , Neoplasm Metastasis
17.
J Invest Dermatol ; 137(4): 884-893, 2017 04.
Article En | MEDLINE | ID: mdl-27939379

Herpes simplex virus 1 has to overcome skin or mucosa barriers to infect its human host. The impact of the various barrier functions on successful viral invasion is not known. On ex vivo infection of murine skin, we observed efficient invasion only via the basal epidermal layer when the dermis was removed. Here, we investigated how wounding and intercellular junction formation control successful viral entry. After wounding of skin samples or removal of the stratum corneum, infected cells were rarely detected. On the basis of infection studies in epidermis from IFN-stimulated mice, we assume that mechanical wounding does not lead to an antiviral state that impedes infection. When we infected human skin equivalents, we observed entry only into unstratified keratinocytes or after wounding of fully stratified cultures. Reduced infection of keratinocytes after calcium-induced stratification confirmed the impact of junction formation. To assess the effect of functional tight junctions, stratified cultures of polarity regulator partitioning-defective-3- or E-cadherin-deficient keratinocytes were infected. As the number of infected cells strongly increased with enhanced paracellular permeability, we conclude that the formation of functional tight junctions interferes with viral entry indicating that next to the stratum corneum tight junctions are a major physical barrier for herpes simplex virus 1 invasion into tissue.


Cell Membrane Permeability/physiology , Epithelium/metabolism , Herpes Simplex/pathology , Herpesvirus 1, Human/pathogenicity , Wounds and Injuries/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Mice , Mice, Inbred C57BL , Random Allocation , Role , Sensitivity and Specificity , Tight Junctions/metabolism , Wounds and Injuries/virology
19.
Mol Ther ; 22(5): 929-39, 2014 May.
Article En | MEDLINE | ID: mdl-24468915

Autologous human keratinocytes (HK) forming sheet grafts are approved as skin substitutes. Genetic engineering of HK represents a promising technique to improve engraftment and survival of transplants. Although efficacious in keratinocyte-directed gene transfer, retro-/lentiviral vectors may raise safety concerns when applied in regenerative medicine. We therefore optimized adeno-associated viral (AAV) vectors of the serotype 2, characterized by an excellent safety profile, but lacking natural tropism for HK, through capsid engineering. Peptides, selected by AAV peptide display, engaged novel receptors that increased cell entry efficiency by up to 2,500-fold. The novel targeting vectors transduced HK with high efficiency and a remarkable specificity even in mixed cultures of HK and feeder cells. Moreover, differentiated keratinocytes in organotypic airlifted three-dimensional cultures were transduced following topical vector application. By exploiting comparative gene analysis we further succeeded in identifying αvß8 integrin as a target receptor thus solving a major challenge of directed evolution approaches and describing a promising candidate receptor for cutaneous gene therapy.


Genetic Engineering , Genetic Therapy , Peptides/genetics , Skin Abnormalities/therapy , Capsid Proteins/genetics , Dependovirus/genetics , Genetic Vectors , Humans , Integrin alpha5/genetics , Keratinocytes/metabolism , Keratinocytes/pathology , Peptides/therapeutic use , Skin Abnormalities/genetics , Skin Abnormalities/pathology , Transduction, Genetic , Tropism
...