Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Immunol Rev ; 323(1): 80-106, 2024 May.
Article En | MEDLINE | ID: mdl-38506411

Clonal expansion of antigen-specific lymphocytes is the fundamental mechanism enabling potent adaptive immune responses and the generation of immune memory. Accompanied by pronounced epigenetic remodeling, the massive proliferation of individual cells generates a critical mass of effectors for the control of acute infections, as well as a pool of memory cells protecting against future pathogen encounters. Classically associated with the adaptive immune system, recent work has demonstrated that innate immune memory to human cytomegalovirus (CMV) infection is stably maintained as large clonal expansions of natural killer (NK) cells, raising questions on the mechanisms for clonal selection and expansion in the absence of re-arranged antigen receptors. Here, we discuss clonal NK cell memory in the context of the mechanisms underlying clonal competition of adaptive lymphocytes and propose alternative selection mechanisms that might decide on the clonal success of their innate counterparts. We propose that the integration of external cues with cell-intrinsic sources of heterogeneity, such as variegated receptor expression, transcriptional states, and somatic variants, compose a bottleneck for clonal selection, contributing to the large size of memory NK cell clones.


Immunologic Memory , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Animals , Cytomegalovirus Infections/immunology , Clonal Selection, Antigen-Mediated , Immunity, Innate , Clone Cells , Cytomegalovirus/immunology , Adaptive Immunity
2.
Nat Immunol ; 24(10): 1685-1697, 2023 Oct.
Article En | MEDLINE | ID: mdl-37697097

Natural killer (NK) cells are innate cytotoxic lymphocytes with adaptive immune features, including antigen specificity, clonal expansion and memory. As such, NK cells share many transcriptional and epigenetic programs with their adaptive CD8+ T cell siblings. Various signals ranging from antigen, co-stimulation and proinflammatory cytokines are required for optimal NK cell responses in mice and humans during virus infection; however, the integration of these signals remains unclear. In this study, we identified that the transcription factor IRF4 integrates signals to coordinate the NK cell response during mouse cytomegalovirus infection. Loss of IRF4 was detrimental to the expansion and differentiation of virus-specific NK cells. This defect was partially attributed to the inability of IRF4-deficient NK cells to uptake nutrients required for survival and memory generation. Altogether, these data suggest that IRF4 is a signal integrator that acts as a secondary metabolic checkpoint to orchestrate the adaptive response of NK cells during viral infection.


Cytomegalovirus Infections , Virus Diseases , Humans , Mice , Animals , Trained Immunity , Killer Cells, Natural , CD8-Positive T-Lymphocytes , Immunologic Memory
3.
Nat Commun ; 14(1): 4809, 2023 08 09.
Article En | MEDLINE | ID: mdl-37558657

HLA-E is a non-classical class I MHC protein involved in innate and adaptive immune recognition. While recent studies have shown HLA-E can present diverse peptides to NK cells and T cells, the HLA-E repertoire recognized by CD94/NKG2x has remained poorly defined, with only a limited number of peptide ligands identified. Here we screen a yeast-displayed peptide library in the context of HLA-E to identify 500 high-confidence unique peptides that bind both HLA-E and CD94/NKG2A or CD94/NKG2C. Utilizing the sequences identified via yeast display selections, we train prediction algorithms and identify human and cytomegalovirus (CMV) proteome-derived, HLA-E-presented peptides capable of binding and signaling through both CD94/NKG2A and CD94/NKG2C. In addition, we identify peptides which selectively activate NKG2C+ NK cells. Taken together, characterization of the HLA-E-binding peptide repertoire and identification of NK activity-modulating peptides present opportunities for studies of NK cell regulation in health and disease, in addition to vaccine and therapeutic design.


Histocompatibility Antigens Class I , Saccharomyces cerevisiae , Humans , Ligands , Saccharomyces cerevisiae/metabolism , Protein Binding , Histocompatibility Antigens Class I/metabolism , Peptides/chemistry , Killer Cells, Natural , HLA-E Antigens
5.
Nat Immunol ; 23(11): 1551-1563, 2022 Nov.
Article En | MEDLINE | ID: mdl-36289449

Clonal expansion of cells with somatically diversified receptors and their long-term maintenance as memory cells is a hallmark of adaptive immunity. Here, we studied pathogen-specific adaptation within the innate immune system, tracking natural killer (NK) cell memory to human cytomegalovirus (HCMV) infection. Leveraging single-cell multiomic maps of ex vivo NK cells and somatic mitochondrial DNA mutations as endogenous barcodes, we reveal substantial clonal expansion of adaptive NK cells in HCMV+ individuals. NK cell clonotypes were characterized by a convergent inflammatory memory signature enriched for AP1 motifs superimposed on a private set of clone-specific accessible chromatin regions. NK cell clones were stably maintained in specific epigenetic states over time, revealing that clonal inheritance of chromatin accessibility shapes the epigenetic memory repertoire. Together, we identify clonal expansion and persistence within the human innate immune system, suggesting that these mechanisms have evolved independent of antigen-receptor diversification.


Cytomegalovirus Infections , Herpesviridae Infections , Humans , Cytomegalovirus Infections/genetics , Killer Cells, Natural , Cytomegalovirus/genetics , Chromatin , Epigenesis, Genetic
6.
Cell Rep ; 38(10): 110503, 2022 03 08.
Article En | MEDLINE | ID: mdl-35235832

Natural killer (NK) cells are innate immune cells that contribute to host defense against virus infections. NK cells respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and are activated in patients with acute coronavirus disease 2019 (COVID-19). However, by which mechanisms NK cells detect SARS-CoV-2-infected cells remains largely unknown. Here, we show that the Non-structural protein 13 of SARS-CoV-2 encodes for a peptide that is presented by human leukocyte antigen E (HLA-E). In contrast with self-peptides, the viral peptide prevents binding of HLA-E to the inhibitory receptor NKG2A, thereby rendering target cells susceptible to NK cell attack. In line with these observations, NKG2A-expressing NK cells are particularly activated in patients with COVID-19 and proficiently limit SARS-CoV-2 replication in infected lung epithelial cells in vitro. Thus, these data suggest that a viral peptide presented by HLA-E abrogates inhibition of NKG2A+ NK cells, resulting in missing self-recognition.


COVID-19 , Histocompatibility Antigens Class I , Killer Cells, Natural , Methyltransferases , NK Cell Lectin-Like Receptor Subfamily C , RNA Helicases , SARS-CoV-2 , Viral Nonstructural Proteins , COVID-19/immunology , Histocompatibility Antigens Class I/immunology , Humans , Killer Cells, Natural/immunology , Methyltransferases/immunology , NK Cell Lectin-Like Receptor Subfamily C/immunology , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Peptides/metabolism , RNA Helicases/immunology , Viral Nonstructural Proteins/immunology , HLA-E Antigens
7.
Nat Immunol ; 22(10): 1231-1244, 2021 10.
Article En | MEDLINE | ID: mdl-34556887

The generation of lymphoid tissues during embryogenesis relies on group 3 innate lymphoid cells (ILC3) displaying lymphoid tissue inducer (LTi) activity and expressing the master transcription factor RORγt. Accordingly, RORγt-deficient mice lack ILC3 and lymphoid structures, including lymph nodes (LN). Whereas T-bet affects differentiation and functions of ILC3 postnatally, the role of T-bet in regulating fetal ILC3 and LN formation remains completely unknown. Using multiple mouse models and single-cell analyses of fetal ILCs and ILC progenitors (ILCP), here we identify a key role for T-bet during embryogenesis and show that its deficiency rescues LN formation in RORγt-deficient mice. Mechanistically, T-bet deletion skews the differentiation fate of fetal ILCs and promotes the accumulation of PLZFhi ILCP expressing central LTi molecules in a RORα-dependent fashion. Our data unveil an unexpected role for T-bet and RORα during embryonic ILC function and highlight that RORγt is crucial in counteracting the suppressive effects of T-bet.


Cell Differentiation/immunology , Immunity, Innate/immunology , Lymph Nodes/immunology , Lymphocytes/immunology , Nuclear Receptor Subfamily 1, Group F, Member 1/immunology , T-Box Domain Proteins/immunology , Animals , Cell Lineage/immunology , Female , Lymphoid Tissue/immunology , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , T-Lymphocytes, Helper-Inducer/immunology
8.
Immunity ; 54(10): 2417-2432.e5, 2021 10 12.
Article En | MEDLINE | ID: mdl-34453879

Innate lymphoid cells (ILCs) are critical effectors of innate immunity and inflammation, whose development and activation pathways make for attractive therapeutic targets. However, human ILC generation has not been systematically explored, and previous in vitro investigations relied on the analysis of few markers or cytokines, which are suboptimal to assign lineage identity. Here, we developed a platform that reliably generated human ILC lineages from CD34+ hematopoietic progenitors derived from cord blood and bone marrow. We showed that one culture condition is insufficient to generate all ILC subsets, and instead, distinct combination of cytokines and Notch signaling are essential. The identity of natural killer (NK)/ILC1s, ILC2s, and ILC3s generated in vitro was validated by protein expression, functional assays, and both global and single-cell transcriptome analysis, recapitulating the signatures and functions of their ex vivo ILC counterparts. These data represent a resource to aid in clarifying ILC biology and differentiation.


Cell Culture Techniques/methods , Cell Lineage/immunology , Hematopoietic Stem Cells/immunology , Immunity, Innate/immunology , Lymphocytes/immunology , Antigens, CD34/immunology , Cell Differentiation/immunology , Hematopoietic Stem Cells/cytology , Humans , Lymphocytes/cytology , Single-Cell Analysis/methods
9.
mBio ; 12(2)2021 03 16.
Article En | MEDLINE | ID: mdl-33727352

Human cytomegalovirus (HCMV) may cause severe infections in lung transplant recipients (LTRs). In response to HCMV infections, a subset of NKG2C+ NK cells expands, which limits HCMV replication and is characterized by high expression of the activating NKG2C/CD94 and absence of the inhibitory NKG2A/CD94 receptor. Both receptors bind to HLA-E, which is stabilized by HCMV-encoded UL40 peptides. HLA-E and UL40 occur as different genetic variants. In this study, we investigated the interplay between the human NK cell response and the infecting HCMV-UL40 strain, and we assessed the impact of HCMV-UL40 and of donor- and recipient-encoded HLA-E*0101/0103 variants on HCMV replication after lung transplantation. We included 137 LTRs displaying either no or low- or high-level (>1,000 copies/ml plasma) viremia. HCMV-UL40 and HLA-E*0101/0103 variants were determined. UL40 diversity was investigated by next-generation sequencing. UL40 peptide-dependent NK cell cytotoxicity was assessed by flow cytometry. Donor-encoded HLA-E*0101/0103 was significantly associated with development of high-level viremia after transplantation (P = 0.007). The HCMV-UL40 variant VMAPRTLIL occurred significantly more frequently in highly viremic LTRs, and the variant VMTPRTLIL occurred significantly more frequently in low-viremic LTRs (P = 0.004). This difference was associated with a better inhibition of NKG2A+ NKG2C- NK cells by VMAPRTLIL (P < 0.001). In LTRs with repeated high-level viremic episodes, HCMV strains with UL40 variants displaying low affinity to the patients' HLA-E variant emerged over time. The HLA-E-UL40 axis has a substantial impact on the level of HCMV replication in LTRs. The interplay between UL40 peptide variants, the recipient HLA-E status, and the activation of inhibitory NKG2A+ NKG2C- cells is of major importance for development of high-level viremia after lung transplantation.IMPORTANCE Infection with human cytomegalovirus (HCMV) is associated with substantial morbidity in immunosuppressed patients and after congenital infections. Therefore, development of a vaccine against HCMV is a main public health priority. Revealing the complex interaction between HCMV and host responses, is of utmost importance for understanding viral pathogenesis and for vaccine design. The present data contribute to the understanding of HCMV-specific host immune responses and reveal specifically the interaction between HLA-E and the virus-encoded UL40 peptide, which further leads to a potent NK cell response. We demonstrate that this interaction is a key factor for reduction of virus replication in immunosuppressed patients. We further show that distinct naturally occurring HCMV-UL40 variants reduce the activation of a specific subpopulation of host NK cells and thereby are associated with high-level viremia in the patients. These findings will allow the characterization of patients at risk for severe HCMV infection and contribute to strategies for HCMV vaccine development.


Cytomegalovirus Infections/virology , Cytomegalovirus/genetics , Cytomegalovirus/physiology , Histocompatibility Antigens Class I/genetics , Host Microbial Interactions/genetics , Killer Cells, Natural/immunology , Viral Proteins/genetics , Virus Replication/genetics , Adult , Aged , Cohort Studies , Cytomegalovirus/classification , Female , Genetic Variation , Histocompatibility Antigens Class I/classification , Humans , Lung Transplantation/adverse effects , Male , Middle Aged , Transplant Recipients/statistics & numerical data , Viremia , Young Adult , HLA-E Antigens
10.
Sci Immunol ; 6(57)2021 03 12.
Article En | MEDLINE | ID: mdl-33712474

The transcription factor BCL11B guides NK cells along their differentiation trajectory (see the related Research Article by Holmes et al.).


Epigenesis, Genetic , Killer Cells, Natural , Cell Differentiation
11.
Nat Commun ; 11(1): 3421, 2020 07 09.
Article En | MEDLINE | ID: mdl-32647184

The OX40-OX40L pathway provides crucial co-stimulatory signals for CD4 T cell responses, however the precise cellular interactions critical for OX40L provision in vivo and when these occur, remains unclear. Here, we demonstrate that provision of OX40L by dendritic cells (DCs), but not T cells, B cells nor group 3 innate lymphoid cells (ILC3s), is critical specifically for the effector Th1 response to an acute systemic infection with Listeria monocytogenes (Lm). OX40L expression by DCs is regulated by cross-talk with NK cells, with IFNγ signalling to the DC to enhance OX40L in a mechanism conserved in both mouse and human DCs. Strikingly, DC expression of OX40L is redundant in a chronic intestinal Th1 response and expression by ILC3s is necessary. Collectively these data reveal tissue specific compartmentalisation of the cellular provision of OX40L and define a mechanism controlling DC expression of OX40L in vivo.


Cellular Microenvironment , OX40 Ligand/metabolism , Th1 Cells/immunology , Animals , Cell Communication , Cues , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Humans , Interferon-gamma/biosynthesis , Interleukin-12/pharmacology , Intestines/cytology , Ki-1 Antigen/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Listeria monocytogenes/physiology , Mice, Inbred C57BL , Receptors, CXCR5/metabolism , Receptors, OX40/metabolism , Spleen/metabolism , Up-Regulation/drug effects
12.
Nat Immunol ; 19(8): 800-808, 2018 08.
Article En | MEDLINE | ID: mdl-30026479

Natural killer (NK) cells are lymphocytes that contribute to the early immune responses to viruses. NK cells are innate immune cells that do not express rearranged antigen receptors but sense their environment via receptors for pro-inflammatory cytokines, as well as via germline-encoded activating receptors specific for danger or pathogen signals. A group of such activating receptors is stochastically expressed by certain subsets within the NK cell compartment. After engagement of the cognate viral ligand, these receptors contribute to the specific activation and 'preferential' population expansion of defined NK cell subsets, which partially recapitulate some features of adaptive lymphocytes. In this Review, we discuss the numerous modes for the specific recognition of viral antigens and peptides by NK cells and the implications of this for the composition of the NK cell repertoire as well as for the the selection of viral variants.


Antigens, Viral/immunology , Killer Cells, Natural/immunology , Peptides/immunology , Receptors, Natural Killer Cell/immunology , Virus Diseases/immunology , Animals , Antigenic Variation , Humans , Immunity, Innate , Ligands
13.
Nat Immunol ; 19(5): 453-463, 2018 05.
Article En | MEDLINE | ID: mdl-29632329

Natural killer (NK) cells are innate lymphocytes that lack antigen-specific rearranged receptors, a hallmark of adaptive lymphocytes. In some people infected with human cytomegalovirus (HCMV), an NK cell subset expressing the activating receptor NKG2C undergoes clonal-like expansion that partially resembles anti-viral adaptive responses. However, the viral ligand that drives the activation and differentiation of adaptive NKG2C+ NK cells has remained unclear. Here we found that adaptive NKG2C+ NK cells differentially recognized distinct HCMV strains encoding variable UL40 peptides that, in combination with pro-inflammatory signals, controlled the population expansion and differentiation of adaptive NKG2C+ NK cells. Thus, we propose that polymorphic HCMV peptides contribute to shaping of the heterogeneity of adaptive NKG2C+ NK cell populations among HCMV-seropositive people.


Cytomegalovirus Infections/immunology , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily C/immunology , Viral Proteins/immunology , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Humans , Viral Proteins/genetics
14.
Front Immunol ; 8: 1976, 2017.
Article En | MEDLINE | ID: mdl-29387058

Human cytomegalovirus (HCMV) infection induces adaptations in the natural killer (NK)-cell compartment. Expanded subsets of adaptive NK cells display potent effector functions against cellular targets, despite their apparent unresponsiveness to stimulation with classical dendritic cell-derived cytokines interleukin (IL)-12 and IL-18. However, it remains unclear whether adaptive NK cells have completely lost their ability to sense inflammation via IL-12 and IL-18 or whether these pro-inflammatory signals can be functionally integrated into defined contexts. Here, we demonstrate that adaptive NKG2C+ NK cells can be costimulated by the presence of pro-inflammatory cytokines during target cell-induced activation. Cytokine costimulation of adaptive NK cells resulted in elevated interferon (IFN)-gamma and tumor necrosis factor (TNF) production, which promoted protein expression of HLA class I and adhesion molecules as well as transcription of genes involved in antigen processing and antiviral states in endothelial bystander cells in vitro. We further show that IL-18 drove costimulation in functional assays and was sufficient for elevated cytokine production in the absence of IL-12. Hence, adaptive NKG2C+ NK cells-although poorly responsive to IL-12 and IL-18 as an isolated stimulus-integrate IL-18 as a costimulatory signal during target-cell encounter.

15.
EMBO Mol Med ; 8(5): 442-57, 2016 05.
Article En | MEDLINE | ID: mdl-26992833

Cancer is a disease of the genome caused by oncogene activation and tumor suppressor gene inhibition. Deep sequencing studies including large consortia such as TCGA and ICGC identified numerous tumor-specific mutations not only in protein-coding sequences but also in non-coding sequences. Although 98% of the genome is not translated into proteins, most studies have neglected the information hidden in this "dark matter" of the genome. Malignancy-driving mutations can occur in all genetic elements outside the coding region, namely in enhancer, silencer, insulator, and promoter as well as in 5'-UTR and 3'-UTR Intron or splice site mutations can alter the splicing pattern. Moreover, cancer genomes contain mutations within non-coding RNA, such as microRNA, lncRNA, and lincRNA A synonymous mutation changes the coding region in the DNA and RNA but not the protein sequence. Importantly, oncogenes such as TERT or miR-21 as well as tumor suppressor genes such as TP53/p53, APC, BRCA1, or RB1 can be affected by these alterations. In summary, coding-independent mutations can affect gene regulation from transcription, splicing, mRNA stability to translation, and hence, this largely neglected area needs functional studies to elucidate the mechanisms underlying tumorigenesis. This review will focus on the important role and novel mechanisms of these non-coding or allegedly silent mutations in tumorigenesis.


Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/pathology , Animals , Humans , RNA Splicing , RNA, Untranslated , Regulatory Sequences, Nucleic Acid , Silent Mutation , Untranslated Regions
...