Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 158(22)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37290069

RESUMEN

Understanding photoluminescent mechanisms has become essential for photocatalytic, biological, and electronic applications. Unfortunately, analyzing excited state potential energy surfaces (PESs) in large systems is computationally expensive, and hence limited with electronic structure methods such as time-dependent density functional theory (TDDFT). Inspired by the sTDDFT and sTDA methods, time-dependent density functional theory plus tight binding (TDDFT + TB) has been shown to reproduce linear response TDDFT results much faster than TDDFT, particularly in large nanoparticles. For photochemical processes, however, methods must go beyond the calculation of excitation energies. Herein, this work outlines an analytical approach to obtain the derivative of the vertical excitation energy in TDDFT + TB for more efficient excited state PES exploration. The gradient derivation is based on the Z vector method, which utilizes an auxiliary Lagrangian to characterize the excitation energy. The gradient is obtained when the derivatives of the Fock matrix, the coupling matrix, and the overlap matrix are all plugged into the auxiliary Lagrangian, and the Lagrange multipliers are solved. This article outlines the derivation of the analytical gradient, discusses the implementation in Amsterdam Modeling Suite, and provides proof of concept by analyzing the emission energy and optimized excited state geometry calculated by TDDFT and TDDFT + TB for small organic molecules and noble metal nanoclusters.


Asunto(s)
Teoría Cuántica , Teoría Funcional de la Densidad
2.
J Chem Inf Model ; 61(8): 3737-3743, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33983727

RESUMEN

This work introduces ParAMS-a versatile Python package that aims to make parametrization workflows in computational chemistry and physics more accessible, transparent, and reproducible. We demonstrate how ParAMS facilitates the parameter optimization for potential energy surface (PES) models, which can otherwise be a tedious specialist task. Because of the package's modular structure, various functionality can be easily combined to implement a diversity of parameter optimization protocols. For example, the choice of PES model and the parameter optimization algorithm can be selected independently. An illustration of ParAMS' strengths is provided in two case studies: (i) a density functional-based tight binding (DFTB) repulsive potential for the inorganic ionic crystal ZnO and (ii) a ReaxFF force field for the simulation of organic disulfides.


Asunto(s)
Algoritmos , Termodinámica
4.
Chemistry ; 23(16): 3824-3827, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28195665

RESUMEN

A macrocyclic ligand (H2 L) containing two o,o'-bis(iminomethyl)phenol and two calix[4]arene head units has been synthesized and its coordination chemistry towards divalent Ni and Zn investigated. The new macrocycle forms complexes of composition [ML] (M=Zn, M=Ni) and [ZnL(py)2 ], which were characterized by elemental analysis; IR, UV/Vis, and NMR spectroscopy; electrospray ionization mass spectrometry (ESI-MS); and X-ray crystallography (for [ZnL(py)2 ] and [NiL]). H2 L allows the sensitive optical detection of Zn2+ among a series of biologically relevant metal ions by a dual fluorescence enhancement/quenching effect in solution. The fluorescence intensity of the macrocycle increases by a factor of ten in the presence of Zn2+ with a detection limit in the lower nanomolar region.

5.
J Chem Phys ; 145(18): 184102, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27846673

RESUMEN

We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, very good agreement with TD-DFT calculations using local functionals was achieved.

6.
Angew Chem Int Ed Engl ; 55(41): 12683-7, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27599895

RESUMEN

We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu(2+) ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu(2+) ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin 1/2 ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion.

7.
J Chem Phys ; 144(18): 184103, 2016 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-27179467

RESUMEN

We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB.

8.
J Chem Theory Comput ; 11(1): 157-67, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26574214

RESUMEN

During the last two decades density functional based linear response approaches have become the de facto standard for the calculation of optical properties of small- and medium-sized molecules. At the heart of these methods is the solution of an eigenvalue equation in the space of single-orbital transitions, whose quickly increasing number makes such calculations costly if not infeasible for larger molecules. This is especially true for time-dependent density functional tight binding (TD-DFTB), where the evaluation of the matrix elements is inexpensive. For the relatively large systems that can be studied the solution of the eigenvalue equation therefore determines the cost of the calculation. We propose to do an oscillator strength based truncation of the single-orbital transition space to reduce the computational effort of TD-DFTB based absorption spectra calculations. We show that even a sizable truncation does not destroy the principal features of the absorption spectrum, while naturally avoiding the unnecessary calculation of excitations with small oscillator strengths. We argue that the reduced computational cost of intensity-selected TD-DFTB together with its ease of use compared to other methods lowers the barrier of performing optical property calculations of large molecules and can serve to make such calculations possible in a wider array of applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...