Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Analyst ; 149(7): 2122-2130, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38436119

RESUMEN

Sensitive mapping of drugs and drug delivery systems is pivotal for the understanding and improvement of treatment options. Since labeling alters the physicochemical and potentially the pharmacological properties of the molecule of interest, its label-free detection by photothermal expansion is investigated. We report on a proof-of-concept study to map the cetuximab distribution by atomic-force microscopy-based infrared spectroscopy (AFM-IR). The monoclonal antibody cetuximab was applied to a human tumor oral mucosa model, consisting of a tumor epithelium on a lamina propria equivalent. Hyperspectral imaging in the wavenumber regime between 903 cm-1 and 1312 cm-1 and a probing distance between the data points down to 10 × 10 nm are used for determining the local drug distribution. The local distinction of cetuximab from the tissue background is gained by linear combination modeling making use of reference spectra of the drug and untreated models. The results from this approach are compared to principal component analyses, yielding comparable results. Even single molecule detection appears feasible. The results indicate that cetuximab penetrates the cytosol of tumor cells but does not bind to structures in the cell membrane. In conclusion, AFM-IR mapping of cetuximab proved to sensitively determine drug concentrations at an unprecedented spatial resolution without the need for drug labeling.


Asunto(s)
Mucosa Bucal , Neoplasias , Humanos , Cetuximab , Microscopía de Fuerza Atómica/métodos , Anticuerpos Monoclonales , Análisis Espectral , Espectrofotometría Infrarroja/métodos
2.
Handb Exp Pharmacol ; 284: 153-189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37566121

RESUMEN

In this chapter, the visualization of nanocarriers and drugs in cells and tissue is reviewed. This topic is tightly connected to modern drug delivery, which relies on nanoscopic drug formulation approaches and the ability to probe nanoparticulate systems selectively in cells and tissue using advanced spectroscopic and microscopic techniques. We first give an overview of the breadth of this research field. Then, we mainly focus on topical drug delivery to the skin and discuss selected visualization techniques from spectromicroscopy, such as scanning transmission X-ray microscopy and fluorescence lifetime imaging. These techniques rely on the sensitive and quantitative detection of the topically applied drug delivery systems and active substances, either by exploiting their molecular properties or by introducing environmentally sensitive probes that facilitate their detection.


Asunto(s)
Sistemas de Liberación de Medicamentos , Piel , Humanos , Preparaciones Farmacéuticas
3.
Phys Chem Chem Phys ; 24(38): 23119-23127, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36056691

RESUMEN

We report the X-ray absorption of isolated H3O+ cations at the O 1s edge. The molecular ions were prepared in a flowing afterglow ion source which was designed for the production of small water clusters, protonated water clusters, and hydrated ions. Isolated H2O+ cations have been analyzed for comparison. The spectra show significant differences in resonance energies and widths compared to neutral H2O with resonances shifting to higher energies by as much as 10 eV and resonance widths increasing by as much as a factor of 5. The experimental results are supported by time-dependent density functional theory calculations performed for both molecular cations, showing a good agreement with the experimental data. The spectra reported here could enable the identification of the individual molecules in charged small water clusters or liquid water using X-ray absorption spectroscopy.

4.
Nanomaterials (Basel) ; 12(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35808130

RESUMEN

Here, the controlled formation of platinum nanoparticles (PtNPs) and silver nanoparticles (AgNPs) using amine-functionalized multivalent ligands are reported. The effects of reaction temperature and ligand multivalency on the growth kinetics, size, and shape of PtNPs and AgNPs were systematically studied by performing a stepwise and a one-step process. PtNPs and AgNPs were prepared in the presence of amine ligands using platinum (II) acetylacetonate and silver (I) acetylacetonate, respectively. The effects of ligands and temperature on the formation of PtNPs were studied using a transmission electron microscope (TEM). For the characterization of AgNPs, additionally, ultraviolet-visible (UV-Vis) absorption was employed. The TEM measurements revealed that PtNPs prepared at different temperatures (160-200 °C, in a stepwise process) are monodispersed and of spherical shape regardless of the ligand multivalency or reaction temperature. In the preparation of PtNPs by the one-step process, ligands affect the shape of the PtNPs, which can be explained by the affinity of the ligands. The TEM and UV-Vis absorption studies on the formation of AgNPs with mono-, di-, and trivalent ligands showed narrower size distributions, while increasing the temperature from 80 °C to 120 °C and with a trivalent ligand in a one-step process.

5.
Int J Nanomedicine ; 16: 7137-7151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712046

RESUMEN

INTRODUCTION: Rapamycin (Rapa) is an immunosuppressive macrolide that inhibits the mechanistic target of rapamycin (mTOR) activity. Thanks to its anti-proliferative effects towards different cell types, including keratinocytes and T cells, Rapa shows promise in the treatment of skin diseases characterized by cell hyperproliferation. However, Rapa skin penetration is limited due to its lipophilic nature (log P = 4.3) and high molecular weight (MW = 914 g/mol). In previous studies, new microenvironment-sensitive core multishell (CMS) nanocarriers capable of sensing the redox state of inflamed skin were developed as more efficient and selective vehicles for macrolide delivery to inflamed skin. METHODS: In this study, we tested such redox-sensitive CMS nanocarriers using an inflammatory skin model based on human skin explants co-cultured with Jurkat T cells. Serine protease (SP) was applied on skin surface to induce skin barrier impairment and oxidative stress, whereas phytohaemagglutinin (PHA), IL-17A, and IL-22 were used to activate Jurkat cells. Activation markers, such as CD45 and CD69, phosphorylated ribosomal protein S6 (pRP-S6), and IL-2 release were monitored in activated T cells, whereas pro-inflammatory cytokines were measured in skin extracts and culture medium. RESULTS: We found that alteration of skin barrier proteins corneodesmosin (CDSN), occludin (Occl), and zonula occludens-1 (ZO-1) as well as oxidation-induced decrease of free thiol groups occurred upon SP-treatment. All Rapa formulations exerted inhibitory effects on T cells after penetration across ex vivo skin. No effects on skin inflammatory markers were detected. The superiority of the oxidative-sensitive CMS nanocarriers over the other formulations was observed with regard to drug delivery as well as downregulation of IL-2 release. CONCLUSION: Overall, our results demonstrate that nanocarriers addressing features of diseased skin are promising approaches to improve the topical delivery of macrolide drugs.


Asunto(s)
Nanopartículas , Absorción Cutánea , Administración Cutánea , Antiinflamatorios/metabolismo , Técnicas de Cocultivo , Dexametasona , Portadores de Fármacos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Sirolimus , Piel/metabolismo
6.
ACS Omega ; 6(18): 12213-12222, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34056375

RESUMEN

Drug penetration in human skin ex vivo following a modification of skin barrier permeability is systematically investigated by scanning transmission X-ray microscopy. Element-selective excitation is used in the O 1s regime for probing quantitatively the penetration of topically applied rapamycin in different formulations with a spatial resolution reaching <75 nm. The data were analyzed by a comparison of two methods: (i) two-photon energies employing the Beer-Lambert law and (ii) a singular value decomposition approach making use of the full spectral information in each pixel of the X-ray micrographs. The latter approach yields local drug concentrations more reliably and sensitively probed than the former. The present results from both approaches indicate that rapamycin is not observed within the stratum corneum of nontreated skin ex vivo, providing evidence for the observation that this high-molecular-weight drug inefficiently penetrates intact skin. However, rapamycin is observed to penetrate more efficiently the stratum corneum when modifications of the skin barrier are induced by the topical pretreatment with the serine protease trypsin for variable time periods ranging from 2 to 16 h. After the longest exposure time to serine protease, the drug is even found in the viable epidermis. High-resolution micrographs indicate that the lipophilic drug preferably associates with corneocytes, while signals found in the intercellular lipid compartment were less pronounced. This result is discussed in comparison to previous work obtained from low-molecular-weight lipophilic drugs as well as polymer nanocarriers, which were found to penetrate the intact stratum corneum exclusively via the lipid layers between the corneocytes. Also, the role of the tight junction barrier in the stratum granulosum is briefly discussed with respect to modifications of the skin barrier induced by enhanced serine protease activity, a phenomenon of clinical relevance in a range of inflammatory skin disorders.

7.
ACS Biomater Sci Eng ; 7(6): 2485-2495, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33905661

RESUMEN

A synthetic route for oxidation-sensitive core-multishell (osCMS) nanocarriers was established, and their drug loading and release properties were analyzed based on their structural variations. The nanocarriers showed a drug loading of 0.3-3 wt % for the anti-inflammatory drugs rapamycin and dexamethasone and the photosensitizer meso-tetra-hydroxyphenyl-porphyrin (mTHPP). Oxidative processes of the nanocarriers were probed in vitro by hydrogen peroxide, and the degradation products were identified by infrared spectroscopy supported by ab initio calculations, yielding mechanistic details on the chemical changes occurring in redox-sensitive nanocarriers. Oxidation-triggered drug release of the model drug Nile Red measured and assessed by time-dependent fluorescence spectroscopy showed a release of up to 80% within 24 h. The drug delivery capacity of the new osCMS nanocarriers was tested in ex vivo human skin with and without pretreatments to induce local oxidative stress. It was found that the delivery of mTHPP was selectively enhanced in skin under oxidative stress. The number and position of the thioether groups influenced the physicochemical as well as drug delivery properties of the carriers.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Dexametasona , Sistemas de Liberación de Medicamentos , Humanos , Oxidación-Reducción
8.
Biomater Sci ; 9(3): 712-725, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33285562

RESUMEN

Among polymeric nanocarriers, nanogels are especially promising non-irritating delivery vehicles to increase dermal bioavailability of therapeutics. However, accurately tailoring defined interactions with the amphiphilic skin barrier is still challenging. To address this limited specificity, we herein present a new strategy to combine biocompatible nanogels with the outstanding skin interaction properties of sulfoxide moieties. These chemical motifs are known from dimethyl sulfoxide (DMSO), a potent chemical penetration enhancer, which can often cause undesired skin damage upon long-term usage. By covalently functionalizing the nanogels' polymer network with such methyl sulfoxide side groups, tailor-made dermal delivery vehicles are developed to circumvent the skin disrupting properties of the small molecules. Key to an effective nanogel-skin interaction is assumed to be the specific nanogel amphiphilicity. This is examined by comparing the delivery efficiency of sulfoxide-based nanogels (NG-SOMe) with their corresponding thioether (NG-SMe) and sulfone-functionalized (NG-SO2Me) analogues. We demonstrate that the amphiphilic sulfoxide-based NG-SOMe nanogels are superior in their interaction with the likewise amphipathic stratum corneum (SC) showing an increased topical delivery efficacy of Nile red (NR) to the viable epidermis (VE) of excised human skin. In addition, toxicological studies on keratinocytes and fibroblasts show good biocompatibility while no perturbation of the complex protein and lipid distribution is observed via stimulated Raman microscopy. Thus, our NG-SOMe nanogels show high potential to effectively emulate the skin penetration enhancing properties of DMSO without its negative side effects.


Asunto(s)
Dimetilsulfóxido , Piel , Humanos , Nanogeles , Polímeros/metabolismo , Piel/metabolismo , Absorción Cutánea
9.
Opt Express ; 28(26): 38762-38772, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379438

RESUMEN

Fourier transform infrared (FTIR) spectroscopy is a powerful technique in analytical chemistry. Typically, spatially distributed spectra of the substance of interest are conducted simultaneously using FTIR spectrometers equipped with array detectors. Scanning-based methods such as near-field FTIR spectroscopy, on the other hand, are a promising alternative providing higher spatial resolution. However, serial recording severely limits their application due to the long acquisition times involved and the resulting stability issues. We demonstrate that it is possible to significantly reduce the measurement time of scanning methods by applying the mathematical technique of low-rank matrix reconstruction. Data from a previous pilot study of Leishmania strains are analyzed by randomly selecting 5% of the interferometer samples. The results obtained for bioanalytical fingerprinting using the proposed approach are shown to be essentially the same as those obtained from the full set of data. This finding can significantly foster the practical applicability of high-resolution serial scanning techniques in analytical chemistry and is also expected to improve other applications of FTIR spectroscopy and spectromicroscopy.

10.
ACS Appl Mater Interfaces ; 12(27): 30136-30144, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32519848

RESUMEN

The use of penetration enhancers (chemical or physical) has been proven to dramatically improve the penetration of therapeutics. Nevertheless, their use poses great risks, as they can lead to permanent damage of the skin, reduce its barrier efficiency, and result in the intrusion of harmful substances. Among the most used skin penetration enhancers, water is greatly accepted because skin quickly recovers from its exposure. Nanocapsules (NCs) represent a promising combination of the carrier system and penetration enhancer because their water-containing void combined with their polymer-based shell can be used to induce high local skin hydration, while simultaneously aiding the transport of drugs across the skin barrier. In this study, NCs were synthesized with a void core of 100 nm in diameter, a thermoresponsive shell based on different ratios of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) as thermoresponsive polymers, and dendritic polyglycerol as a macromolecular cross-linker. These NCs can shrink or swell upon a thermal trigger, which was used to induce the release of the entrapped water in a controlled fashion. The interactions and effects of thermoresponsive NCs on the stratum corneum of excised human skin were investigated using fluorescence microscopy, high-resolution optical microscopy, and stimulated Raman spectromicroscopy. It could be observed that the thermoresponsive NCs increase the amount of deuterated water that penetrated into the viable epidermis. Moreover, NCs increased the skin penetration of a high-molecular weight dye (Atto Oxa12 NHS ester, MW = 835 g/mol) with respect to formulations in water or 30% DMSO, emphasizing the features of the NCs as a skin penetration enhancer.


Asunto(s)
Glicerol/química , Nanocápsulas/química , Polímeros/química , Piel/metabolismo , Humanos , Microscopía Fluorescente , Nanopartículas/química , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA