Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 74
1.
Neuro Oncol ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38743009

Pediatric low-grade glioma (pLGG) is the most common childhood brain tumor group. The natural history, when curative resection is not possible, is one of a chronic disease with periods of tumor stability and episodes of tumor progression. While there is a high overall survival rate, many patients experience significant and potentially lifelong morbidities. The majority of pLGGs have an underlying activation of the RAS/MAPK pathway due to mutational events, leading to the use of molecularly targeted therapies in clinical trials, with recent regulatory approval for the combination of BRAF and MEK inhibition for BRAFV600E mutated pLGG. Despite encouraging activity, tumor regrowth can occur during therapy due to drug resistance, off treatment as tumor recurrence, or as reported in some patients as a rapid rebound growth within 3 months of discontinuing targeted therapy. Definitions of these patterns of regrowth have not been well described in pLGG. For this reason, the International Pediatric Low-Grade Glioma Coalition, a global group of physicians and scientists, formed the Resistance, Rebound, and Recurrence (R3) working group to study resistance, rebound, and recurrence. A modified Delphi approach was undertaken to produce consensus-based definitions and recommendations for regrowth patterns in pLGG with specific reference to targeted therapies.

2.
Laryngoscope ; 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38525973

OBJECTIVES: Medical therapies to limit disease recurrence are critically needed for recurrent respiratory papillomatosis (RRP). Systemic bevacizumab is emerging as an exciting adjuvant therapy toward this end, but uptake has been poor due to the lack of experience and awareness of best prescribing practices. The objective of this study was to describe a single tertiary care academic medical center's experience using systemic bevacizumab for the treatment of RRP. METHODS: A retrospective review was performed to identify patients with RRP on systemic bevacizumab. Demographic and clinical characteristics, findings on imaging reports, and disease response at all anatomic subsites involved in papilloma were documented. RESULTS: Of the 17 RRP patients on systemic bevacizumab, 9 (52.9%) were male, and 12 (70.6%) were diagnosed with juvenile-onset RRP. The total lifetime number of surgeries was high, with more than half (n = 9; 52.9%) undergoing more than 50 surgeries. Following induction of systemic bevacizumab, a significant reduction in patients with laryngeal (n = 15; 94.1% vs. n = 7; 41.2%, p < 0.001) and tracheal (n = 11; 64.7% vs. n = 5; 29.4%, p = 0.04) RRP was noted. Surgical frequency was significantly lower following systemic bevacizumab (2.5 vs. 0.5 surgeries per year; p < 0.001). The most common complications were new-onset hypertension (n = 4; 23.5%) and proteinuria (n = 5; 29.4%). CONCLUSION: Systemic bevacizumab is effective in reducing the number of surgeries needed for RRP while exhibiting a relatively safe complication profile. Papillomas in the larynx and trachea are most responsive to systemic bevacizumab, while pulmonary RRP is most likely to exhibit a partial-to-stable response. LEVEL OF EVIDENCE: 4 Laryngoscope, 2024.

3.
Neurooncol Adv ; 6(1): vdae023, 2024.
Article En | MEDLINE | ID: mdl-38468866

Background: Diffuse intrinsic pontine glioma (DIPG) is a uniformly lethal brainstem tumor of childhood, driven by histone H3 K27M mutation and resultant epigenetic dysregulation. Epigenomic analyses of DIPG have shown global loss of repressive chromatin marks accompanied by DNA hypomethylation. However, studies providing a static view of the epigenome do not adequately capture the regulatory underpinnings of DIPG cellular heterogeneity and plasticity. Methods: To address this, we performed whole-genome bisulfite sequencing on a large panel of primary DIPG specimens and applied a novel framework for analysis of DNA methylation variability, permitting the derivation of comprehensive genome-wide DNA methylation potential energy landscapes that capture intrinsic epigenetic variation. Results: We show that DIPG has a markedly disordered epigenome with increasingly stochastic DNA methylation at genes regulating pluripotency and developmental identity, potentially enabling cells to sample diverse transcriptional programs and differentiation states. The DIPG epigenetic landscape was responsive to treatment with the hypomethylating agent decitabine, which produced genome-wide demethylation and reduced the stochasticity of DNA methylation at active enhancers and bivalent promoters. Decitabine treatment elicited changes in gene expression, including upregulation of immune signaling such as the interferon response, STING, and MHC class I expression, and sensitized cells to the effects of histone deacetylase inhibition. Conclusions: This study provides a resource for understanding the epigenetic instability that underlies DIPG heterogeneity. It suggests the application of epigenetic therapies to constrain the range of epigenetic states available to DIPG cells, as well as the use of decitabine in priming for immune-based therapies.

4.
J Clin Invest ; 134(6)2024 Feb 06.
Article En | MEDLINE | ID: mdl-38319732

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.


Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Glioma , Metformin , Humans , Mice , Animals , Diffuse Intrinsic Pontine Glioma/drug therapy , Diffuse Intrinsic Pontine Glioma/genetics , Phosphatidylinositol 3-Kinases/genetics , Brain Stem Neoplasms/drug therapy , Brain Stem Neoplasms/genetics , Glioma/drug therapy , Glioma/genetics , Glioma/pathology , TOR Serine-Threonine Kinases/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Glucose , Metformin/pharmacology , Tumor Microenvironment
6.
Cancer Cell ; 41(4): 660-677.e7, 2023 04 10.
Article En | MEDLINE | ID: mdl-37001527

Pediatric solid and central nervous system tumors are the leading cause of cancer-related death among children. Identifying new targeted therapies necessitates the use of pediatric cancer models that faithfully recapitulate the patient's disease. However, the generation and characterization of pediatric cancer models has significantly lagged behind adult cancers, underscoring the urgent need to develop pediatric-focused cell line resources. Herein, we establish a single-site collection of 261 cell lines, including 224 pediatric cell lines representing 18 distinct extracranial and brain childhood tumor types. We subjected 182 cell lines to multi-omics analyses (DNA sequencing, RNA sequencing, DNA methylation), and in parallel performed pharmacological and genetic CRISPR-Cas9 loss-of-function screens to identify pediatric-specific treatment opportunities and biomarkers. Our work provides insight into specific pathway vulnerabilities in molecularly defined pediatric tumor classes and uncovers biomarker-linked therapeutic opportunities of clinical relevance. Cell line data and resources are provided in an open access portal.


Brain Neoplasms , Child , Humans , Brain Neoplasms/pathology , Cell Line, Tumor
7.
Acta Neuropathol Commun ; 11(1): 38, 2023 03 10.
Article En | MEDLINE | ID: mdl-36899402

Medulloblastoma (MB) develops through various genetic, epigenetic, and non-coding (nc) RNA-related mechanisms, but the roles played by ncRNAs, particularly circular RNAs (circRNAs), remain poorly defined. CircRNAs are increasingly recognized as stable non-coding RNA therapeutic targets in many cancers, but little is known about their function in MBs. To determine medulloblastoma subgroup-specific circRNAs, publicly available RNA sequencing (RNA-seq) data from 175 MB patients were interrogated to identify circRNAs that differentiate between MB subgroups. circ_63706 was identified as sonic hedgehog (SHH) group-specific, with its expression confirmed by RNA-FISH analysis in clinical tissue samples. The oncogenic function of circ_63706 was characterized in vitro and in vivo. Further, circ_63706-depleted cells were subjected to RNA-seq and lipid profiling to identify its molecular function. Finally, we mapped the circ_63706 secondary structure using an advanced random forest classification model and modeled a 3D structure to identify its interacting miRNA partner molecules. Circ_63706 regulates independently of the host coding gene pericentrin (PCNT), and its expression is specific to the SHH subgroup. circ_63706-deleted cells implanted into mice produced smaller tumors, and mice lived longer than parental cell implants. At the molecular level, circ_63706-deleted cells elevated total ceramide and oxidized lipids and reduced total triglyceride. Our study implicates a novel oncogenic circular RNA in the SHH medulloblastoma subgroup and establishes its molecular function and potential as a future therapeutic target.


Cerebellar Neoplasms , Medulloblastoma , MicroRNAs , Child , Humans , Animals , Mice , RNA, Circular/genetics , Medulloblastoma/genetics , Hedgehog Proteins/metabolism , MicroRNAs/genetics , Cerebellar Neoplasms/genetics
8.
Neoplasia ; 37: 100880, 2023 03.
Article En | MEDLINE | ID: mdl-36773516

Atypical teratoid rhabdoid tumors (AT/RT) are malignant central nervous system (CNS) tumors that occur mostly in young children and have historically carried a very poor prognosis. While recent clinical trial results show that this tumor is curable, outcomes are still poor compared to other central nervous system embryonal tumors. We here review prior AT/RT clinical trials and highlight promising pre-clinical results that may inform novel clinical approaches to this aggressive cancer.


Central Nervous System Neoplasms , Rhabdoid Tumor , Teratoma , Child , Child, Preschool , Humans , Infant , Rhabdoid Tumor/pathology , Rhabdoid Tumor/therapy , SMARCB1 Protein , Teratoma/pathology , Teratoma/therapy
9.
Nat Cell Biol ; 25(3): 493-507, 2023 03.
Article En | MEDLINE | ID: mdl-36849558

How abnormal neurodevelopment relates to the tumour aggressiveness of medulloblastoma (MB), the most common type of embryonal tumour, remains elusive. Here we uncover a neurodevelopmental epigenomic programme that is hijacked to induce MB metastatic dissemination. Unsupervised analyses of integrated publicly available datasets with our newly generated data reveal that SMARCD3 (also known as BAF60C) regulates Disabled 1 (DAB1)-mediated Reelin signalling in Purkinje cell migration and MB metastasis by orchestrating cis-regulatory elements at the DAB1 locus. We further identify that a core set of transcription factors, enhancer of zeste homologue 2 (EZH2) and nuclear factor I X (NFIX), coordinates with the cis-regulatory elements at the SMARCD3 locus to form a chromatin hub to control SMARCD3 expression in the developing cerebellum and in metastatic MB. Increased SMARCD3 expression activates Reelin-DAB1-mediated Src kinase signalling, which results in a MB response to Src inhibition. These data deepen our understanding of how neurodevelopmental programming influences disease progression and provide a potential therapeutic option for patients with MB.


Cerebellar Neoplasms , Medulloblastoma , Humans , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Medulloblastoma/genetics , Phosphorylation , Epigenomics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/pharmacology , Cerebellar Neoplasms/genetics , Epigenesis, Genetic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism
10.
Neuro Oncol ; 25(5): 899-912, 2023 05 04.
Article En | MEDLINE | ID: mdl-36273330

BACKGROUND: Intensive chemotherapeutic regimens with craniospinal irradiation have greatly improved survival in medulloblastoma patients. However, survival markedly differs among molecular subgroups and their biomarkers are unknown. Through unbiased screening, we found Schlafen family member 11 (SLFN11), which is known to improve response to DNA damaging agents in various cancers, to be one of the top prognostic markers in medulloblastomas. Hence, we explored the expression and functions of SLFN11 in medulloblastoma. METHODS: SLFN11 expression for each subgroup was assessed by immunohistochemistry in 98 medulloblastoma patient samples and by analyzing transcriptomic databases. We genetically or epigenetically modulated SLFN11 expression in medulloblastoma cell lines and determined cytotoxic response to the DNA damaging agents cisplatin and topoisomerase I inhibitor SN-38 in vitro and in vivo. RESULTS: High SLFN11 expressing cases exhibited significantly longer survival than low expressing cases. SLFN11 was highly expressed in the WNT-activated subgroup and in a proportion of the SHH-activated subgroup. While WNT activation was not a direct cause of the high expression of SLFN11, a specific hypomethylation locus on the SLFN11 promoter was significantly correlated with high SLFN11 expression. Overexpression or deletion of SLFN11 made medulloblastoma cells sensitive and resistant to cisplatin and SN-38, respectively. Pharmacological upregulation of SLFN11 by the brain-penetrant histone deacetylase-inhibitor RG2833 markedly increased sensitivity to cisplatin and SN-38 in SLFN11-negative medulloblastoma cells. Intracranial xenograft studies also showed marked sensitivity to cisplatin by SLFN11-overexpression in medulloblastoma cells. CONCLUSIONS: High SLFN11 expression is one factor which renders favorable outcomes in WNT-activated and a subset of SHH-activated medulloblastoma possibly through enhancing response to cisplatin.


Cerebellar Neoplasms , Medulloblastoma , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Cisplatin/pharmacology , Up-Regulation , Irinotecan , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Epigenesis, Genetic , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Nuclear Proteins/metabolism
11.
Cell Death Dis ; 13(4): 410, 2022 04 28.
Article En | MEDLINE | ID: mdl-35484114

Atypical teratoid/rhabdoid tumors (AT/RT) are the most common malignant brain tumors of infancy and have a dismal 4-year event-free survival (EFS) of 37%. We have previously shown that mTOR activation contributes to AT/RT's aggressive growth and poor survival. Targeting the mTOR pathway with the dual mTORC1/2 inhibitor TAK-228 slows tumor growth and extends survival in mice bearing orthotopic xenografts. However, responses are primarily cytostatic with limited durability. The aim of this study is to understand the impact of mTOR inhibitors on AT/RT signaling pathways and design a rational combination therapy to drive a more durable response to this promising therapy. We performed RNASeq, gene expression studies, and protein analyses to identify pathways disrupted by TAK-228. We find that TAK-228 decreases the expression of the transcription factor NRF2 and compromises AT/RT cellular defenses against oxidative stress and apoptosis. The BH3 mimetic, Obatoclax, is a potent inducer of oxidative stress and apoptosis in AT/RT. These complementary mechanisms of action drive extensive synergies between TAK-228 and Obatoclax slowing AT/RT cell growth and inducing apoptosis and cell death. Combination therapy activates the integrative stress response as determined by increased expression of phosphorylated EIF2α, ATF4, and CHOP, and disrupts the protective NOXA.MCL-1.BIM axis, forcing stressed cells to undergo apoptosis. Combination therapy is well tolerated in mice bearing orthotopic xenografts of AT/RT, slows tumor growth, and extends median overall survival. This novel combination therapy could be added to standard upfront therapies or used as a salvage therapy for relapsed disease to improve outcomes in AT/RT.


Rhabdoid Tumor , Animals , Humans , Indoles , Mechanistic Target of Rapamycin Complex 1 , Mice , Pyrroles/pharmacology , Pyrroles/therapeutic use , Rhabdoid Tumor/drug therapy , Rhabdoid Tumor/pathology , TOR Serine-Threonine Kinases
12.
Cancers (Basel) ; 14(5)2022 Mar 03.
Article En | MEDLINE | ID: mdl-35267619

Reprograming of cellular metabolism is a hallmark of cancer. Altering metabolism allows cancer cells to overcome unfavorable microenvironment conditions and to proliferate and invade. Medulloblastoma is the most common malignant brain tumor of children. Genomic amplification of MYC defines a subset of poor-prognosis medulloblastoma. We performed comprehensive metabolic studies of human MYC-amplified medulloblastoma by comparing the metabolic profiles of tumor cells in three different conditions-in vitro, in flank xenografts and in orthotopic xenografts in the cerebellum. Principal component analysis showed that the metabolic profiles of brain and flank high-MYC medulloblastoma tumors clustered closely together and separated away from normal brain and in vitro MYC-amplified cells. Compared to normal brain, MYC-amplified medulloblastoma orthotopic xenograft tumors showed upregulation of the TCA cycle as well as the synthesis of nucleotides, hexosamines, amino acids and glutathione. There was significantly higher glucose uptake and usage in orthotopic xenograft tumors compared to flank xenograft tumors and cells in culture. In orthotopic tumors, glucose was the main carbon source for the de novo synthesis of glutamate, glutamine and glutathione through the TCA cycle. In vivo, the glutaminase II pathway was the main pathway utilizing glutamine. Glutathione was the most abundant upregulated metabolite in orthotopic tumors compared to normal brain. Glutamine-derived glutathione was synthesized through the glutamine transaminase K (GTK) enzyme in vivo. In conclusion, high MYC medulloblastoma cells have different metabolic profiles in vitro compared to in vivo, and key vulnerabilities may be missed by not performing in vivo metabolic analyses.

13.
Mol Cell Proteomics ; 20: 100123, 2021.
Article En | MEDLINE | ID: mdl-34298159

The mitogen-activated protein kinase pathway is one of the most frequently altered pathways in cancer. It is involved in the control of cell proliferation, invasion, and metabolism, and can cause resistance to therapy. A number of aggressive malignancies, including melanoma, colon cancer, and glioma, are driven by a constitutively activating missense mutation (V600E) in the v-Raf murine sarcoma viral oncogene homolog B (BRAF) component of the pathway. Mitogen-activated protein kinase kinase (MEK) inhibition is initially effective in targeting these cancers, but reflexive activation of mammalian target of rapamycin (mTOR) signaling contributes to frequent therapy resistance. We have previously demonstrated that combination treatment with the MEK inhibitor trametinib and the dual mammalian target of rapamycin complex 1/2 inhibitor TAK228 improves survival and decreases vascularization in a BRAFV600E mutant glioma model. To elucidate the mechanism of action of this combination therapy and understand the ensuing tumor response, we performed comprehensive unbiased proteomic and phosphoproteomic characterization of BRAFV600E mutant glioma xenografts after short-course treatment with trametinib and TAK228. We identified 13,313 proteins and 30,928 localized phosphosites, of which 12,526 proteins and 17,444 phosphosites were quantified across all samples (data available via ProteomeXchange; identifier PXD022329). We identified distinct response signatures for each monotherapy and combination therapy and validated that combination treatment inhibited activation of the mitogen-activated protein kinase and mTOR pathways. Combination therapy also increased apoptotic signaling, suppressed angiogenesis signaling, and broadly suppressed the activity of the cyclin-dependent kinases. In response to combination therapy, both epidermal growth factor receptor and class 1 histone deacetylase proteins were activated. This study reports a detailed (phospho)proteomic analysis of the response of BRAFV600E mutant glioma to combined MEK and mTOR pathway inhibition and identifies new targets for the development of rational combination therapies for BRAF-driven tumors.


Benzoxazoles/therapeutic use , Brain Neoplasms/drug therapy , Glioma/drug therapy , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Phosphoproteins/metabolism , Protein Kinase Inhibitors/therapeutic use , Pyridones/therapeutic use , Pyrimidines/therapeutic use , Pyrimidinones/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzoxazoles/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Female , Glioma/genetics , Glioma/metabolism , Humans , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Proteomics , Proto-Oncogene Proteins B-raf/genetics , Pyridones/pharmacology , Pyrimidines/pharmacology , Pyrimidinones/pharmacology
14.
Int J Mol Sci ; 22(8)2021 Apr 10.
Article En | MEDLINE | ID: mdl-33920124

Central nervous system tumor with BCL6-corepressor internal tandem duplication (CNS-BCOR ITD) is a malignant entity characterized by recurrent alterations in exon 15 encoding the essential binding domain for the polycomb repressive complex (PRC). In contrast to deletion or truncating mutations seen in other tumors, BCOR expression is upregulated in CNS-BCOR ITD, and a distinct oncogenic mechanism has been suggested. However, the effects of this change on the biology of neuroepithelial cells is poorly understood. In this study, we introduced either wildtype BCOR or BCOR-ITD into human and murine neural stem cells and analyzed them with quantitative RT-PCR and RNA-sequencing, as well as growth, clonogenicity, and invasion assays. In human cells, BCOR-ITD promoted derepression of PRC2-target genes compared to wildtype BCOR. A similar effect was found in clinical specimens from previous studies. However, no growth advantage was seen in the human neural stem cells expressing BCOR-ITD, and long-term models could not be established. In the murine cells, both wildtype BCOR and BCOR-ITD overexpression affected cellular differentiation and histone methylation, but only BCOR-ITD increased cellular growth, invasion, and migration. BCOR-ITD overexpression drives transcriptional changes, possibly due to altered PRC function, and contributes to the oncogenic transformation of neural precursors.


Cell Proliferation/genetics , Central Nervous System Neoplasms/genetics , Polycomb-Group Proteins/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Animals , Cell Line, Tumor , Central Nervous System Neoplasms/pathology , Gene Duplication/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Mice , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Tandem Repeat Sequences/genetics
15.
Neuro Oncol ; 23(4): 572-585, 2021 04 12.
Article En | MEDLINE | ID: mdl-33844835

BACKGROUND: Medulloblastoma (MB) is an aggressive brain tumor that predominantly affects children. Recent high-throughput sequencing studies suggest that the noncoding RNA genome, in particular long noncoding RNAs (lncRNAs), contributes to MB subgrouping. Here we report the identification of a novel lncRNA, lnc-HLX-2-7, as a potential molecular marker and therapeutic target in Group 3 MBs. METHODS: Publicly available RNA sequencing (RNA-seq) data from 175 MB patients were interrogated to identify lncRNAs that differentiate between MB subgroups. After characterizing a subset of differentially expressed lncRNAs in vitro and in vivo, lnc-HLX-2-7 was deleted by CRISPR/Cas9 in the MB cell line. Intracranial injected tumors were further characterized by bulk and single-cell RNA-seq. RESULTS: Lnc-HLX-2-7 is highly upregulated in Group 3 MB cell lines, patient-derived xenografts, and primary MBs compared with other MB subgroups as assessed by quantitative real-time, RNA-seq, and RNA fluorescence in situ hybridization. Depletion of lnc-HLX-2-7 significantly reduced cell proliferation and 3D colony formation and induced apoptosis. Lnc-HLX-2-7-deleted cells injected into mouse cerebellums produced smaller tumors than those derived from parental cells. Pathway analysis revealed that lnc-HLX-2-7 modulated oxidative phosphorylation, mitochondrial dysfunction, and sirtuin signaling pathways. The MYC oncogene regulated lnc-HLX-2-7, and the small-molecule bromodomain and extraterminal domain family‒bromodomain 4 inhibitor Jun Qi 1 (JQ1) reduced lnc-HLX-2-7 expression. CONCLUSIONS: Lnc-HLX-2-7 is oncogenic in MB and represents a promising novel molecular marker and a potential therapeutic target in Group 3 MBs.


Cerebellar Neoplasms , Medulloblastoma , RNA, Long Noncoding , Carcinogenesis , Cerebellar Neoplasms/genetics , Homeodomain Proteins , Humans , In Situ Hybridization, Fluorescence , Medulloblastoma/genetics , RNA, Long Noncoding/genetics , Transcription Factors
16.
J Neuropathol Exp Neurol ; 80(4): 336-344, 2021 03 22.
Article En | MEDLINE | ID: mdl-33712838

Medulloblastoma is the most common malignant pediatric brain tumor. Amplification of c-MYC is a hallmark of a subset of poor-prognosis medulloblastoma. MYC upregulates glutamine metabolism across many types of cancer. We modified the naturally occurring glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) by adding 2 promoeities to increase its lipophilicity and brain penetration creating the prodrug isopropyl 6-diazo-5-oxo-2-(((phenyl (pivaloyloxy) methoxy) - carbonyl) amino) hexanoate, termed JHU395. This prodrug was shown to have a 10-fold improved CSF-to-plasma ratio and brain-to-plasma ratio relative to DON. We hypothesized that JHU395 would have superior cell penetration compared with DON and would effectively and more potently kill MYC-expressing medulloblastoma. JHU395 treatment caused decreased growth and increased apoptosis in multiple human high-MYC medulloblastoma cell lines at lower concentrations than DON. Parenteral administration of JHU395 in Nu/Nu mice led to the accumulation of micromolar concentrations of DON in brain. Treatment of mice bearing orthotopic xenografts of human MYC-amplified medulloblastoma with JHU395 increased median survival from 26 to 45 days compared with vehicle control mice (p < 0.001 by log-rank test). These data provide preclinical justification for the ongoing development and testing of brain-targeted DON prodrugs for use in medulloblastoma.


Apoptosis/drug effects , Caproates/pharmacology , Cerebellar Neoplasms/drug therapy , Diazooxonorleucine/analogs & derivatives , Diazooxonorleucine/pharmacology , Glutamine/antagonists & inhibitors , Medulloblastoma/drug therapy , Animals , Apoptosis/physiology , Caproates/chemistry , Caproates/therapeutic use , Cell Line, Tumor , Cerebellar Neoplasms/pathology , Diazooxonorleucine/therapeutic use , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/chemistry , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/therapeutic use , Female , Glutamine/metabolism , Humans , Medulloblastoma/pathology , Mice , Mice, Nude
17.
Cancer Lett ; 504: 137-145, 2021 04 28.
Article En | MEDLINE | ID: mdl-33571541

Medulloblastoma is the most common malignant pediatric brain tumor. Tumors having high levels of c-MYC have the worst clinical prognosis, with only a minority of patients surviving. To address this unmet clinical need, we generated a human neural stem cell model of medulloblastoma that recapitulated the most aggressive subtype phenotypically and by mRNA expression profiling. An in silico analysis of these cells identified mTOR inhibitors as potential therapeutic agents. We hypothesized that the orally bioavailable TORC1/2 kinase inhibitor TAK228 would have activity against MYC-driven medulloblastoma. TAK228 inhibited mTORC1/2, decreased cell growth and caused apoptosis in high-MYC medulloblastoma cell lines. Comprehensive metabolic profiling of medulloblastoma orthotopic xenografts showed upregulation of glutathione compared to matched normal brain. TAK228 suppressed glutathione production. Because glutathione is required to detoxify platinum-containing chemotherapy, we hypothesized that TAK228 would cooperate with carboplatin in medulloblastoma. TAK228 synergized with carboplatin to inhibit cell growth and induce apoptosis and extended survival in orthotopic xenografts of high-MYC medulloblastoma. Brain-penetrant TORC1/2 inhibitors and carboplatin may be an effective combination therapy for high-risk medulloblastoma.


Antineoplastic Agents/therapeutic use , Carboplatin/therapeutic use , Cell Proliferation/physiology , Cerebellar Neoplasms/pathology , Glutathione/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Medulloblastoma/pathology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-myc/physiology , Animals , Antineoplastic Agents/pharmacology , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/enzymology , Cerebellar Neoplasms/metabolism , Female , Humans , Medulloblastoma/drug therapy , Medulloblastoma/enzymology , Medulloblastoma/metabolism , Mice , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays
18.
J Pediatr Hematol Oncol ; 43(1): e123-e126, 2021 01.
Article En | MEDLINE | ID: mdl-32459718

BACKGROUND: Prior reports have shown the utility of conventional lipiodol-based transarterial chemoembolization in hepatoblastoma. The authors describe the first reported case of hepatoblastoma treated with drug-eluting bead transarterial chemoembolization (DEB-TACE). OBSERVATIONS: An 11-month-old infant presented with hepatoblastoma measuring 14.3 cm. A trial of cisplatin chemotherapy followed by sequential DEB-TACE to the tumor's feeding vasculature reduced the mass to 5.3 cm. The patient tolerated both sessions of DEB-TACE without any major complication. Having demonstrated adequate disease control, the patient then underwent successful liver transplantation. CONCLUSION: This report provides promising evidence for the treatment of hepatoblastoma with DEB-TACE.


Antineoplastic Agents/therapeutic use , Chemoembolization, Therapeutic/methods , Cisplatin/therapeutic use , Hepatoblastoma/therapy , Liver Neoplasms/therapy , Liver Transplantation/methods , Combined Modality Therapy , Female , Hepatoblastoma/pathology , Humans , Infant , Liver Neoplasms/pathology , Prognosis
19.
Neuro Oncol ; 23(5): 770-782, 2021 05 05.
Article En | MEDLINE | ID: mdl-33258947

BACKGROUND: The conditional reprogramming cell culture method was developed to facilitate growth of senescence-prone normal and neoplastic epithelial cells, and involves co-culture with irradiated fibroblasts and the addition of a small molecule Rho kinase (ROCK) inhibitor. The aim of this study was to determine whether this approach would facilitate the culture of compact low-grade gliomas. METHODS: We attempted to culture 4 pilocytic astrocytomas, 2 gangliogliomas, 2 myxopapillary ependymomas, 2 anaplastic gliomas, 2 difficult-to-classify low-grade neuroepithelial tumors, a desmoplastic infantile ganglioglioma, and an anaplastic pleomorphic xanthoastrocytoma using a modified conditional reprogramming cell culture approach. RESULTS: Conditional reprogramming resulted in robust increases in growth for a majority of these tumors, with fibroblast conditioned media and ROCK inhibition both required. Switching cultures to standard serum containing media, or serum-free neurosphere conditions, with or without ROCK inhibition, resulted in decreased proliferation and induction of senescence markers. Rho kinase inhibition and conditioned media both promoted Akt and Erk1/2 activation. Several cultures, including one derived from a NF1-associated pilocytic astrocytoma (JHH-NF1-PA1) and one from a BRAF p.V600E mutant anaplastic pleomorphic xanthoastrocytoma (JHH-PXA1), exhibited growth sufficient for preclinical testing in vitro. In addition, JHH-NF1-PA1 cells survived and migrated in larval zebrafish orthotopic xenografts, while JHH-PXA1 formed orthotopic xenografts in mice histopathologically similar to the tumor from which it was derived. CONCLUSIONS: These studies highlight the potential for the conditional reprogramming cell culture method to promote the growth of glial and glioneuronal tumors in vitro, in some cases enabling the establishment of long-term culture and in vivo models.


Astrocytoma , Brain Neoplasms , Cellular Reprogramming , Glioma , Animals , Cell Culture Techniques , Mice , Proto-Oncogene Proteins B-raf , Zebrafish
20.
Clin Cancer Res ; 27(6): 1807-1820, 2021 03 15.
Article En | MEDLINE | ID: mdl-33376098

PURPOSE: Atypical teratoid/rhabdoid tumors (AT/RT) and central nervous system primitive neuroectodermal tumors (CNS-PNET) are pediatric brain tumors with poor survival and life-long negative side effects. Here, the aim was to characterize the efficacy and safety of the oncolytic adenovirus, Delta-24-RGD, which selectively replicates in and kills tumor cells. EXPERIMENTAL DESIGN: Delta-24-RGD determinants for infection and replication were evaluated in patient expression datasets. Viral replication and cytotoxicity were assessed in vitro in a battery of CNS-PNET and AT/RT cell lines. In vivo, efficacy was determined in different orthotopic mouse models, including early and established tumor models, a disseminated AT/RT lesion model, and immunocompetent humanized mouse models (hCD34+-NSG-SGM3). RESULTS: Delta-24-RGD infected and replicated efficiently in all the cell lines tested. In addition, the virus induced dose-dependent cytotoxicity [IC50 value below 1 plaque-forming unit (PFU)/cell] and the release of immunogenic markers. In vivo, a single intratumoral Delta-24-RGD injection (107 or 108 PFU) significantly increased survival and led to long-term survival in AT/RT and PNET models. Delta-24-RGD hindered the dissemination of AT/RTs and increased survival, leading to 70% of long-term survivors. Of relevance, viral administration to established tumor masses (30 days after engraftment) showed therapeutic benefit. In humanized immunocompetent models, Delta-24-RGD significantly extended the survival of mice bearing AT/RTs or PNETs (ranging from 11 to 27 days) and did not display any toxicity associated with inflammation. Immunophenotyping of Delta-24-RGD-treated tumors revealed increased CD8+ T-cell infiltration. CONCLUSIONS: Delta-24-RGD is a feasible therapeutic option for AT/RTs and CNS-PNETs. This work constitutes the basis for potential translation to the clinical setting.


Central Nervous System Neoplasms/therapy , Neuroectodermal Tumors, Primitive/therapy , Oligopeptides/genetics , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Rhabdoid Tumor/therapy , Teratoma/therapy , Animals , Apoptosis , Cell Proliferation , Central Nervous System Neoplasms/immunology , Central Nervous System Neoplasms/mortality , Central Nervous System Neoplasms/pathology , Female , Humans , Immunity, Cellular , Mice , Mice, Inbred C57BL , Mice, Nude , Neuroectodermal Tumors, Primitive/immunology , Neuroectodermal Tumors, Primitive/mortality , Neuroectodermal Tumors, Primitive/pathology , Rhabdoid Tumor/immunology , Rhabdoid Tumor/mortality , Rhabdoid Tumor/pathology , Teratoma/immunology , Teratoma/mortality , Teratoma/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
...