Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
2.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article En | MEDLINE | ID: mdl-34799442

Understanding the functional role of protein-excited states has important implications in protein design and drug discovery. However, because these states are difficult to find and study, it is still unclear if excited states simply result from thermal fluctuations and generally detract from function or if these states can actually enhance protein function. To investigate this question, we consider excited states in ß-lactamases and particularly a subset of states containing a cryptic pocket which forms under the Ω-loop. Given the known importance of the Ω-loop and the presence of this pocket in at least two homologs, we hypothesized that these excited states enhance enzyme activity. Using thiol-labeling assays to probe Ω-loop pocket dynamics and kinetic assays to probe activity, we find that while this pocket is not completely conserved across ß-lactamase homologs, those with the Ω-loop pocket have a higher activity against the substrate benzylpenicillin. We also find that this is true for TEM ß-lactamase variants with greater open Ω-loop pocket populations. We further investigate the open population using a combination of NMR chemical exchange saturation transfer experiments and molecular dynamics simulations. To test our understanding of the Ω-loop pocket's functional role, we designed mutations to enhance/suppress pocket opening and observed that benzylpenicillin activity is proportional to the probability of pocket opening in our designed variants. The work described here suggests that excited states containing cryptic pockets can be advantageous for function and may be favored by natural selection, increasing the potential utility of such cryptic pockets as drug targets.


Penicillinase/chemistry , Penicillinase/drug effects , beta-Lactamases/chemistry , beta-Lactamases/pharmacology , Binding Sites , Escherichia coli , Escherichia coli Proteins , Molecular Dynamics Simulation , Mutation , Penicillin G/chemistry , Penicillin G/metabolism , Penicillinase/metabolism , Protein Conformation , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , beta-Lactamases/genetics
3.
J Cell Biol ; 219(5)2020 05 04.
Article En | MEDLINE | ID: mdl-32236517

Plasma membrane injury can cause lethal influx of calcium, but cells survive by mounting a polarized repair response targeted to the wound site. Mitochondrial signaling within seconds after injury enables this response. However, as mitochondria are distributed throughout the cell in an interconnected network, it is unclear how they generate a spatially restricted signal to repair the plasma membrane wound. Here we show that calcium influx and Drp1-mediated, rapid mitochondrial fission at the injury site help polarize the repair response. Fission of injury-proximal mitochondria allows for greater amplitude and duration of calcium increase in these mitochondria, allowing them to generate local redox signaling required for plasma membrane repair. Drp1 knockout cells and patient cells lacking the Drp1 adaptor protein MiD49 fail to undergo injury-triggered mitochondrial fission, preventing polarized mitochondrial calcium increase and plasma membrane repair. Although mitochondrial fission is considered to be an indicator of cell damage and death, our findings identify that mitochondrial fission generates localized signaling required for cell survival.


Cell Membrane/genetics , Dynamins/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics , Peptide Elongation Factors/genetics , Animals , Apoptosis/genetics , Calcium/metabolism , Calcium Signaling/drug effects , Calcium Signaling/genetics , Cell Membrane/pathology , Fibroblasts , Humans , Mice , Microtubule-Associated Proteins/genetics , Mitochondria/pathology , Mitochondrial Dynamics/genetics , Signal Transduction/genetics
...