Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Z Naturforsch C J Biosci ; 77(5-6): 241-251, 2022 May 25.
Article En | MEDLINE | ID: mdl-34856089

In the present study, copper (II) complex of 4, 4'-di-tert-butyl-2,2'-bipyridine [Cu (C18H24N2) (NO3)2], 1 is investigated through its synthesis and characterization using elemental analysis technique, infra-red spectroscopy, and single-crystal analysis. The compound 1 crystallizes in orthorhombic space group P212121. The copper atom in the mononuclear complex is hexa coordinated through two nitrogen and four oxygen atoms from bipyridine ligand and nitrate ligands. The thermal analysis depicts the stability of the entitled compound up to 170 °C, and the decomposition takes place in different steps between 170 and 1000 °C. Furthermore, quantum chemical techniques are used to study optoelectronic, nonlinear optical, and therapeutic bioactivity. The values of isotropic and anisotropic linear polarizabilities of compound 1 are calculated as 41.65 × 10-24 and 23.02 × 10-24 esu, respectively. Likewise, the static hyperpolarizability is calculated as 47.92 × 10-36 esu using M06 functional compared with para-nitroaniline (p-NA) and found several times larger than p-NA. Furthermore, the antiviral potential of compound 1 is studied using molecular docking technique where intermolecular interactions are checked between the entitled compound and two crucial proteins of SARS-CoV-2 (COVID-19). Our investigation indicated that compound 1 interacts more vigorously to spike protein than main protease (MPro) due to its better binding energy of -9.60 kcal/mol compared with -9.10 kcal/mol of MPro. Our current study anticipated that the above-entitled coordination complexes could be potential candidates for optoelectronic properties and their biological activity.


COVID-19 , Heterocyclic Compounds , Copper/chemistry , Crystallography, X-Ray , Humans , Ligands , Molecular Docking Simulation , SARS-CoV-2
2.
Environ Sci Pollut Res Int ; 27(1): 133-142, 2020 Jan.
Article En | MEDLINE | ID: mdl-31832939

Picotechnology development in vast disciplines is mainly attributed to the research and development (R and D) on nanotechnology. Being a parent technology, nanotechnology is the cornerstone of picotechnology. Like nanotechnology, the reference standard for picotechnology is nature, the cellular and subcellular functioning. Some studies have highlighted that the functional margin of similar type of molecules at picoscale (10-12) goes higher than at nanoscale (10-9). In this review, the potential applications of picotechnology have been evaluated especially in the disciplines of biomedical and environmental sciences. Extended surface area and improved electrical, chemical, optical, and mechanical properties make picotechnological products even better than nanomaterials. The fundamental objective of this study is to bring the attention of the scientific world towards the picoscale interventions and to highlight the wide scope of picotechnology as a newly emerging technology with applications in numerous sectors. Picotechnology has made it possible to measure very small structure in advance biomedical and environmental sciences studies. Adequate developments in picotechnology will certainly change human lives in near future because it will make possible for the research world to dive into systems and structures on picoscale. It will render a platform through which explorers can travel into ultra-small areas, which will lead to the creation of new dimensions as well as new opportunities. Eventually, in future, the picotechnology will become smaller enough to give birth to femtotechnology (10-15) in real-world applications.


Environmental Science , Nanotechnology , Humans , Nanostructures
3.
Chemosphere ; 245: 125605, 2020 Apr.
Article En | MEDLINE | ID: mdl-31883499

Despite extensive research progress in the recent past, the data regarding foliar uptake of heavy metals, associated biophysiochemical changes inside plants and possible health hazards are limited. This study determined the effect of foliar application of lead oxide nanoparticles (PbO-NPs) on lead (Pb) accumulation, physiological and biochemical changes inside spinach plants and associated health risks. A green method was used to prepare PbO-NPs using coconut water. Scanning electron microscopy (SEM) showed the preparation of smooth, unwrinkled, granular and spherical PbO-NPs. Spinach leaves were exposed via foliar application to three concentrations of PbO-NPs (0, 10 and 50 mg/plant). Foliar PbO-NPs application resulted in a significant accumulation of Pb in leaves (42.25 µg g-1), with limited translocation towards root tissues (4.46 µg g-1). This revealed that spinach can accumulate considerable amount of Pb via foliar uptake. Lead accumulation inside spinach caused a significant decrease in pigment contents (38%) and dry weight (67%). After foliar uptake, Pb caused several-fold increase in the activities of catalase and peroxidase. However, foliar PbO-NPs did not induce significant changes in H2O2 production, lipid peroxidation and superoxide dismutase activity. Application of PbO-NPs (50 mg/plant) showed possible health risks (non-carcinogenic) due to ingesting Pb-contaminated leaves of spinach. It is proposed that atmospheric contamination and foliar deposition of metal-PM can seriously affect vegetable growth and can provoke health issues due to ingestion of metal-enriched vegetables. Therefore, atmospheric levels of heavy metals need to be monitored on a regular basis to avoid their food chain contamination and possible human exposure.


Lead/pharmacokinetics , Oxides/pharmacology , Plant Leaves/drug effects , Risk Assessment , Spinacia oleracea/drug effects , Environmental Pollution , Food Contamination , Humans , Hydrogen Peroxide/pharmacology , Lead/pharmacology , Multivariate Analysis , Nanoparticles/chemistry
4.
Environ Sci Pollut Res Int ; 27(32): 39717-39725, 2020 Nov.
Article En | MEDLINE | ID: mdl-31713143

Lithium (Li) exploitation for industrial and domestic use is resulting in a buildup of the element in various environmental components that results in potential toxicity to living systems. Therefore, a soil culture experiment was conducted to evaluate the effects of increasing concentration of Li (0, 20, 40, 60, and 80 mg kg-1 soil) on spinach growth, the effects of Li uptake, and its effects on various physiological attributes of the crop. The results showed that lower levels of Li in soil (20 mg Li kg-1) improve the growth of spinach plants, while a higher concentration of applied Li enhanced the pigment contents. Higher concentrations of Li in soil interfered with potassium and calcium uptake in plants. Moreover, increasing Li concentration resulted in higher activities of antioxidant enzymes activity in spinach shoots. From these results, it is concluded that spinach shoot accumulated higher concentrations of Li without showing any visual toxicity symptoms. Therefore, the study concludes that Li ion was mostly deposited in leaves rather than in roots which may cause potential human health risk on the consumption of Li-contaminated plants. Therefore, the cultivation of leafy vegetables in Li-affected soils should be avoided to reduce the potential human health risks.


Soil Pollutants , Soil , Humans , Lithium/analysis , Soil Pollutants/analysis , Spinacia oleracea , Vegetables
5.
Int J Phytoremediation ; 21(2): 138-144, 2019.
Article En | MEDLINE | ID: mdl-30816070

Lead (Pb) is a toxic heavy metal causing serious health risks to humans and animals. In the present study, cotton (Gossypium hirsutum L.) shells powder was used as adsorbent for the treatment of synthetic Pb-contaminated water. The batch scale biosorption capacity of cotton shells powder was evaluated to study the effects of Pb concentrations, adsorbent doses and contact time at constant pH (6) and temperature (25 °C). Results revealed that sorption of Pb increased (q = 0.09-9.60 mg/g) with increasing Pb concentration (1-15 mg/L) and contact time (15-90 min) while decreasing adsorbent dose (1-0.1 g/100 mL). The maximum Pb removal (90%) was achieved at Pb concentration (1 mg/L), contact time (90 min) and adsorbent dose (1 g/100 mL). Freundlich isotherm model proved best fit for Pb sorption (R2 = 0.99). The cotton shells powder has microporous structure confirmed by SEM, and has BET surface area (45 m2/g) and pore size (2.3 µm). These surface moieties along with various functional groups (C-H, C-O, C=O, O-H, S=O) confirmed by FTIR analysis might involve in Pb removal by complexation and ion exchange mechanisms. The cotton shells powder biomass could be considered as promising adsorbent for the removal of Pb from contaminated water.


Gossypium , Water Pollutants, Chemical/analysis , Adsorption , Biodegradation, Environmental , Hydrogen-Ion Concentration , Kinetics , Lead/analysis
6.
Environ Sci Pollut Res Int ; 26(20): 20121-20131, 2019 Jul.
Article En | MEDLINE | ID: mdl-30560534

Atmospheric contamination by heavy metal(loid)-enriched particulate matter (metal-PM) is highly topical these days because of its high persistence, toxic nature, and health risks. Globally, foliar uptake of metal(loid)s occurs for vegetables/crops grown in the vicinity of industrial or urban areas with a metal-PM-contaminated atmosphere. The current study evaluated the foliar uptake of arsenic (As), accumulation of As in different plant organs, its toxicity (in terms of ROS generation, chlorophyll degradation, and lipid peroxidation), and its defensive mechanism (antioxidant enzymes) in spinach (Spinacia oleracea) after foliar application of As in the form of nanoparticles (As-NPs). The As-NPs were prepared using a chemical method. Results indicate that spinach can absorb As via foliar pathways (0.50 to 0.73 mg/kg in leaves) and can translocate it towards root tissues (0.35 to 0.68 mg/kg). However, health risk assessment parameters showed that the As level in the edible parts of spinach was below the critical limit (hazard quotient < 1). Despite low tissue level, As-NP exposure caused phytotoxicity in terms of a decrease in plant dry biomass (up to 84%) and pigment contents (up to 38%). Furthermore, several-fold higher activities of antioxidant enzymes were observed under metal stress than control. However, no significant variation was observed in the level of hydrogen peroxide (H2O2), which can be its possible transformation to other forms of reactive oxygen species (ROS). It is proposed that As can be absorbed by spinach via foliar pathway and then disturbs the plant metabolism. Therefore, air quality needs to be considered and monitored continuously for the human health risk assessment and quality of vegetables cultivated on polluted soils (roadside and industrial vicinity). Graphical abstract ᅟ.


Arsenic/pharmacokinetics , Arsenic/toxicity , Nanoparticles , Plant Leaves/drug effects , Risk Assessment/methods , Spinacia oleracea/drug effects , Air Pollutants/pharmacokinetics , Air Pollutants/toxicity , Chlorophyll/metabolism , Dietary Exposure , Enzymes/metabolism , Food Contamination , Humans , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Nanoparticles/toxicity , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Spinacia oleracea/metabolism
7.
PeerJ ; 6: e5672, 2018.
Article En | MEDLINE | ID: mdl-30280040

Lead (Pb) is a ubiquitous pollutant which poses serious threats to plants, animals and humans once entered into the food chain via contaminated industrial effluents on their discharge into the surface of water bodies and/or geological materials. This study aimed to examine and compare the biosorption potential of natural sugarcane bagasse (NB), pyrolysed sugarcane bagasse (PB) and acid assisted pyrolysed sugarcane bagasse (APB) for the removal of Pb from contaminated water. To explore this objective, a series of batch experiments were conducted at various adsorbent mass (0.25, 0.5, 0.75, 1.0 g per 100 ml contaminated water), initial Pb concentration (7, 15, 30, 60 and 120 ppm), and contact time (7, 15, 30, 60 and 120 min). Results revealed that all the tested bio-sorbents have potential to adsorb and remove Pb ions from the contaminated water. In this regard, APB proved more effective since it removed 98% of Pb from aqueous solution at initial Pb concentration of 7 ppm and mass of 0.25 g per 100 ml of aqueous solution. The respective values in case of NB and PB were 90 and 95%. For a given adsorbent type, Pb adsorption decreased by increasing the mass from 0.25 to 1.0 g per 100 ml of aqueous solution. However, the greatest Pb removal occurred at adsorbent mass of 1.0 g per 100 ml of aqueous solution. Initial Pb concentration had a great impact on Pb adsorption and removal by adsorbent. The former increased and the latter decreased with the increase in initial Pb concentration from seven to 120 ppm. At seven ppm Pb concentration, maximum Pb removal took place irrespective to the adsorbent type. Out of the total Pb adsorption and removal, maximum contribution occurred within 15 min of contact time between the adsorbate and adsorbent, which slightly increased till 30 min, thereafter, it reached to equilibrium. Application of equilibrium isotherm models revealed that our results were better fitted with Freundlich adsorption isotherm model. Overall, and for the reasons detailed above, it is concluded that sugarcane bagasse has capabilities to adsorb and remove Pb ions from contaminated water. Its bio-sorption potential was considerably increased after pyrolysis and acid treatment.

8.
J Med Microbiol ; 66(3): 318-327, 2017 Mar.
Article En | MEDLINE | ID: mdl-28150580

PURPOSE: In the present study, enhancement of the the antibacterial activity of ceftriaxone against Gram-positive (meticillin-resistant Staphylococcus aureus; MRSA) and Gram-negative (Escherichia coli) bacteria with a biodegradable polymer was attempted. METHODOLOGY: MRSA and E. coli were collected and identified by biochemical and molecular tests. Blank and ceftriaxone-loaded chitosan nanoparticles (CNPs) were prepared by the ionic gelation method. In vitro antibiotic-susceptibility studies were performed by disc diffusion, agar well plate method, Etest and time-kill assay. In vivo activity was assessed using the neutropenic mouse thigh model and cytotoxicity was estimated by MTT (methylthiazolyldiphenyl tetrazolium bromide) assay with the MCF-7 cancer cell line. RESULTS: MRSA showed 97 % and E. coli 83 % resistance against ceftriaxone in the disc diffusion test. The isolates showing a ≥1024 mg l-1 MIC value for ceftriaxone were selected for further evaluation. In the agar well plate method, the mean zones of inhibition for blank and ceftriaxone-loaded CNPs were 17 and 23 mm, respectively, for MRSA isolates and 15 and 25 mm, respectively, for E. coli isolates. In the time-kill assay, ~1 log10 to ~2.5 log10 reduction in viability was seen with both isolates when treated with ceftriaxone-loaded CNPs over 24 h. The in vivo studies also showed the enhanced antibacterial activity of ceftriaxone-loaded CNPs, with a 41 % reduction in MRSA and a 27 % reduction in E. coli burden. A low cytotoxicity of blank and ceftriaxone-loaded CNPs was seen, with a slight reduction in the percentage viability of cells from 87 to 83 % and from 88 to 81 %, respectively. CONCLUSION: The synergistic effect of ceftriaxone-loaded CNPs is a useful finding for the treatment of MRSA and E. coli infections.


Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry , Ceftriaxone/pharmacology , Chitosan/pharmacology , Escherichia coli/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Nanoparticles/chemistry , Animals , Anti-Bacterial Agents/administration & dosage , Biocompatible Materials/administration & dosage , Biocompatible Materials/pharmacology , Ceftriaxone/administration & dosage , Ceftriaxone/chemistry , Chitosan/administration & dosage , Chitosan/chemistry , Disease Models, Animal , Drug Synergism , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Mice , Microbial Sensitivity Tests , Microbial Viability/drug effects , Neutropenia , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
9.
J Phys Chem A ; 119(7): 1108-16, 2015 Feb 19.
Article En | MEDLINE | ID: mdl-25611751

Gold nanoparticle-porphyrin assemblies were formed by binding functionalized porphyrins to gold nanoparticles (Au-NPs). Spectroscopic properties of hybrids and binding strength of porphyrins to Au-NPs were observed based on number and type of linker moieties using fluorescence spectroscopy. Binding appears to be dependent on number rather than type of linker moieties present on the porphyrin molecules, as tetraaminophenyl porphyrin shows the highest binding among the molecules we studied and causes agglomeration of nanoparticles due to presence of four linker groups. The inner filter effects of Au-NPs are considerably high due to their high extinction coefficient and cause large errors in the evaluation of quenching efficiencies. We have described a very simple method to calculate the inner filter effects of Au-NPs by first loading them with porphyrins and then replacing them with nonfluorescent ligands. The difference in the fluorescence of unbound porphyrins in the presence and absence of Au-NPs describes their inner filter effects.

10.
PLoS One ; 9(5): e97175, 2014.
Article En | MEDLINE | ID: mdl-24844633

A synthetic study in the Cd-Se-O-Cl system led to formation of the new oxochloride compound Cd4(SeO3)2OCl2 via solid state reactions. The compound crystallizes in the orthorhombic space group Fmmm with cell parameters a = 7.3610(3) Å, b = 15.4936(2) Å, c = 17.5603(3) Å, Z = 8, S = 0.969, F(000) = 2800, R = 0.0185, Rw = 0.0384. Single crystal X-ray data were collected at 293 K. The crystal structure can be considered as layered and the building units are distorted [Cd(1)O6] octahedra, distorted [Cd(2)O8] cubes, irregular [Cd(3)O4Cl2] polyhedra and SeO3E trigonal pyramids. There are two crystallographically unique Cl atoms that both are half occupied. Thermogravimetric studies show that the compound starts to decompose at 500°C. The crystal structure of the new compound is closely related to the previously described compound Cd4(SeO3)2Cl4(H2O).


Cadmium Chloride/chemistry , Cadmium Compounds/chemistry , Hot Temperature , Models, Chemical , Selenium Compounds/chemistry , Cadmium Chloride/chemical synthesis , Cadmium Compounds/chemical synthesis , Selenium Compounds/chemical synthesis
11.
Dalton Trans ; 43(10): 3984-9, 2014 Mar 14.
Article En | MEDLINE | ID: mdl-24452596

Two new oxohalides Co4Se3O9Cl2 and Co3Se4O10Cl2 have been synthesized by solid state reactions. They crystallize in the orthorhombic space group Pnma and the monoclinic space group C2/m respectively. The crystal structure of the two compounds are made up of similar building blocks; Co4Se3O9Cl2 is made up of [CoO4Cl2], [CoO5Cl] and [SeO3] polyhedra and Co3Se4O10Cl2 is made up of [CoO4Cl2] and [SeO3] polyhedra. As several Co-containing compounds have proved to be good catalysts for water oxidation, the activities of the two new compounds were compared with the previously found oxohalide Co5Se4O12Cl2 in reference to CoO and CoCl2. The one electron oxidant Ru(bpy)3(3+) was used as oxidizing species in a phosphate buffer and it was found that the activities of the oxohalide species were in between CoO and CoCl2. The roles of Cl(-) and PO4(3-) ions are discussed.

12.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 7): i61, 2012 Jul 01.
Article En | MEDLINE | ID: mdl-22807701

The crystal structure of dicobalt(II) divanadium(V) disel-enium(IV) undeca-oxide, Co2V2Se2O11, exhibits a three-dimensional framework, the building units being distorted CoO6 octa-hedra and VO5 square pyramids arranged so as to form alternate chains along [010]. The framework has channels along [100] and [010] in which the two Ψ-SeO3E (site symmetries m; E being the 4s² lone electron pair of Se(IV)) tetra-hedra reside and connect to the other building blocks. The structure contains corner- and edge-sharing CoO6 octa-hedra, corner- and edge-sharing VO5 square pyramids and edge-sharing Ψ-SeO3E tetra-hedra. Co2V2Se2O11 is the first oxide containing all the cations Co(II), V(V) and Se(IV).

...