Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 12(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36671335

RESUMEN

The global demand for fish products is continuously increasing as the population grows, and aquaculture plays an important role in supplying this demand. However, industrial antibiotic misuse has contributed to the spread of antimicrobial resistance among pathogenic bacteria, therefore, several antibiotic alternatives have been proposed. In this study, we have analyzed the effects of Allium-derived propyl propane thiosulfonate (PTSO) in European seabass juveniles' growth and performance. These effects were tested by measuring the body weight and analyzing the gut microbiome of fish after 89 days of feeding trial. The relative abundance of potentially pathogenic Vibrio in the foregut and hindgut of supplemented fish decreased, while Pseudomonas and Kocuria increased significantly. Alpha diversity indices significantly decreased in both gut regions of fish fed with Allium-derived PTSO supplemented diet, as well as between bacterial community composition. These results may indicate a positive effect of the supplementation in the diet with Allium-derived PTSO, reducing potentially pathogenic Vibrio and increasing body weight at the end of the experiment (89 days). However, this supplementation with Allium-derived PTSO produces changes in the diversity and composition of microbial communities, so further experiments would be necessary to explore bacterial community composition and health relationship.

2.
Animals (Basel) ; 12(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35883368

RESUMEN

This study analyzes the potential use of an Allium-derived compound, propyl propane thiosulfonate (PTSO), as a functional feed additive in aquaculture. Gilthead seabream (Sparus aurata) juveniles had their diet supplemented with this Allium-derived compound (150 mg/kg of PTSO) and were compared with control fish. The effects of this organosulfur compound were tested by measuring the body weight and analyzing the gut microbiota after 12 weeks. The relative abundance of potentially pathogenic Vibrio and Pseudomonas in the foregut and hindgut of supplemented fish significantly decreased, while potentially beneficial Lactobacillus increased compared to in the control fish. Shannon's alpha diversity index significantly increased in both gut regions of fish fed with a PTSO-supplemented diet. Regarding beta diversity, significant differences between treatments only appeared in the hindgut when minority ASVs were taken into account. No differences occurred in body weight during the experiment. These results indicate that supplementing the diet with Allium-derived PTSO produced beneficial changes in the intestinal microbiota while maintaining the productive parameters of gilthead seabream juveniles.

3.
Antibiotics (Basel) ; 10(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800152

RESUMEN

Antimicrobial resistance (AMR) has risen as a global threat for human health. One of the leading factors for this emergence has been the massive use of antibiotics growth-promoter (AGPs) in livestock, enhancing the spread of AMR among human pathogenic bacteria. Thus, several alternatives such as probiotics, prebiotics, or phytobiotics have been proposed for using in animal feeding to maintain or improve productive levels while diminishing the negative effects of AGPs. Reducing the use of antibiotics is a key aspect in the pig rearing for production reasons, as well as for the production of high-quality pork, acceptable to consumers. Here we analyze the potential use of Allium extract as an alternative. In this study, weaned piglets were fed with Allium extract supplementation and compared with control and antibiotic (colistin and zinc oxide) treated piglets. The effects of Allium extract were tested by analyzing the gut microbiome and measuring different productive parameters. Alpha diversity indices decreased significantly in Allium extract group in caecum and colon. Regarding beta diversity, significant differences between treatments appeared only in caecum and colon. Allium extract and antibiotic piglets showed better values of body weight (BW), average daily weight gain (ADG), and feed conversion ratio (FCR) than control group. These results indicate that productive parameters can be implemented by modifying the gut microbiota through phytobiotics such as Allium extract, which will drive to drop the use of antibiotics in piglet diet.

4.
Animals (Basel) ; 11(2)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572138

RESUMEN

Phytobiotics (bioactive compounds extracted from plants) are one of the explored alternatives to antibiotics in poultry and livestock due to their antimicrobial activity and its positive effects on gut microbiota and productive properties. In this study, we supplemented a product based on garlic and onion compounds in the diet to laying hens at the beginning of their productive life (from 16 to 20 weeks post-hatching). The experimental group showed a significant increase in the number of eggs laid and in their size, produced in one month compared to the control. This increase in production was accompanied by microbiota changes in the ileum and cecum by means of high throughput sequencing analyses. These bacterial shifts in the ileum were mainly the result of compositional changes in the rare biosphere (unweighted UniFrac), while in the cecum, treatment affected both majority and minority bacterial groups (weighted and unweighted UniFrac). These changes in the microbiota suggest an improvement in food digestibility. The relative abundance of Lactococcus in the ileum and Lactobacillus in the cecum increased significantly in the experimental group. The relative abundance of these bacterial genera are known to have positive effects on the hosts. These results are very promising for the use of these compounds in poultry for short periods.

5.
ISME J ; 14(11): 2691-2702, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32681160

RESUMEN

Gut microbiota are essential for host health and survival, but we are still far from understanding the processes involved in shaping their composition and evolution. Controlled experimental work under lab conditions as well as human studies pointed at environmental factors (i.e., diet) as the main determinant of the microbiota with little evidence of genetic effects, while comparative interspecific studies detected significant phylogenetic effects. Different species, however, also differ in diet, feeding behavior, and environmental characteristics of habitats, all of which also vary interspecifically, and, therefore, can potentially explain most of the detected phylogenetic patterns. Here, we take advantage of the reproductive strategy of avian brood parasites and investigate gut microbiotas (esophageal (food and saliva) and intestinal) of great spotted cuckoo (Clamator glandarius) and magpie (Pica pica) nestlings that grow in the same nests. We also estimated diet received by each nestling and explored its association with gut microbiota characteristics. Although esophageal microbiota of magpies and great spotted cuckoos raised within the same environment (nest) did not vary, the microbiota of cloacal samples showed clear interspecific differences. Moreover, diet of great spotted cuckoo and magpie nestlings explained the microbiota composition of esophageal samples, but not of cloaca samples. These results strongly suggest a genetic component determining the intestinal microbiota of host and parasitic bird species, indicating that interspecific differences in gut morphology and physiology are responsible for such interspecific differences.


Asunto(s)
Microbioma Gastrointestinal , Parásitos , Passeriformes , Animales , Clima , Humanos , Filogenia
6.
Front Microbiol ; 10: 1042, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178831

RESUMEN

Antimicrobial resistance (AMR) is one of the most serious threats for human health in the near future. Livestock has played an important role in the appearance of antibiotic-resistant bacteria, intestinal dysbiosis in farming animals, or the spread of AMR among pathogenic bacteria of human concern. The development of alternatives like probiotics is focused on maintaining or improving production levels while diminishing these negative effects of antibiotics. To this end, we supplied the potential probiotic Enterococcus faecalis UGRA10 in the diet of laying hens at a final concentration of 108 Colony Forming Units per gram (CFU/g) of fodder. Its effects have been analyzed by: (i) investigating the response of the ileum and caecum microbiome; and (ii) analyzing the outcome on eggs production. During the second half of the experimental period (40 to 76 days), hens fed E. faecalis UGRA10 maintained egg production, while control animals dropped egg production. Supplementation diet with E. faecalis UGRA10 significantly increased ileum and caecum bacterial diversity (higher bacterial operational taxonomic unit richness and Faith's diversity index) of laying hens, with animals fed the same diet showing a higher similarity in microbial composition. These results point out to the beneficial effects of E. faecalis UGRA10 in egg production. Future experiments are necessary to unveil the underlying mechanisms that mediate the positive response of animals to this treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...