Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 386, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172185

RESUMEN

The Internet of Things (IoT) is extensively used in modern-day life, such as in smart homes, intelligent transportation, etc. However, the present security measures cannot fully protect the IoT due to its vulnerability to malicious assaults. Intrusion detection can protect IoT devices from the most harmful attacks as a security tool. Nevertheless, the time and detection efficiencies of conventional intrusion detection methods need to be more accurate. The main contribution of this paper is to develop a simple as well as intelligent security framework for protecting IoT from cyber-attacks. For this purpose, a combination of Decisive Red Fox (DRF) Optimization and Descriptive Back Propagated Radial Basis Function (DBRF) classification are developed in the proposed work. The novelty of this work is, a recently developed DRF optimization methodology incorporated with the machine learning algorithm is utilized for maximizing the security level of IoT systems. First, the data preprocessing and normalization operations are performed to generate the balanced IoT dataset for improving the detection accuracy of classification. Then, the DRF optimization algorithm is applied to optimally tune the features required for accurate intrusion detection and classification. It also supports increasing the training speed and reducing the error rate of the classifier. Moreover, the DBRF classification model is deployed to categorize the normal and attacking data flows using optimized features. Here, the proposed DRF-DBRF security model's performance is validated and tested using five different and popular IoT benchmarking datasets. Finally, the results are compared with the previous anomaly detection approaches by using various evaluation parameters.

2.
Sensors (Basel) ; 23(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36850412

RESUMEN

The physical layer security of wireless networks is becoming increasingly important because of the rapid development of wireless communications and the increasing security threats. In addition, because of the open nature of the wireless channel, authentication is a critical issue in wireless communications. Physical layer authentication (PLA) is based on distinctive features to provide information-theory security and low complexity. However, although many researchers are interested in the PLA and how it might be used to improve wireless security, there is surprisingly little literature on the subject, with no systematic overview of the current state-of-the-art PLA and the main foundations involved. Therefore, this paper aims to determine and systematically compare existing studies in the physical layer authentication. This study showed whether machine learning approaches in physical layer authentication models increased wireless network security performance and demonstrated the latest techniques used in PLA. Moreover, it identified issues and suggested directions for future research. This study is valuable for researchers and security model developers interested in using machine learning (ML) and deep learning (DL) approaches for PLA in wireless communication systems in future research and designs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA