Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 61
1.
BMC Med ; 22(1): 78, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38378570

BACKGROUND: The immunity induced by primary vaccination is effective against COVID-19; however, booster vaccines are needed to maintain vaccine-induced immunity and improve protection against emerging variants. Heterologous boosting is believed to result in more robust immune responses. This study investigated the safety and immunogenicity of the Razi Cov Pars vaccine (RCP) as a heterologous booster dose in people primed with Beijing Bio-Institute of Biological Products Coronavirus Vaccine (BBIBP-CorV). METHODS: We conducted a randomized, double-blind, active-controlled trial in adults aged 18 and over primarily vaccinated with BBIBP-CorV, an inactivated SARS-CoV-2 vaccine. Eligible participants were randomly assigned (1:1) to receive a booster dose of RCP or BBIBP-CorV vaccines. The primary outcome was neutralizing antibody activity measured by a conventional virus neutralization test (cVNT). The secondary efficacy outcomes included specific IgG antibodies against SARS-CoV-2 spike (S1 and receptor-binding domain, RBD) antigens and cell-mediated immunity. We measured humoral antibody responses at 2 weeks (in all participants) and 3 and 6 months (a subgroup of 101 participants) after the booster dose injection. The secondary safety outcomes were solicited and unsolicited immediate, local, and systemic adverse reactions. RESULTS: We recruited 483 eligible participants between December 7, 2021, and January 13, 2022. The mean age was 51.9 years, and 68.1% were men. Neutralizing antibody titers increased about 3 (geometric mean fold increase, GMFI = 2.77, 95% CI 2.26-3.39) and 21 (GMFI = 21.51, 95% CI 16.35-28.32) times compared to the baseline in the BBIBP-CorV and the RCP vaccine groups. Geometric mean ratios (GMR) and 95% CI for serum neutralizing antibody titers for RCP compared with BBIBP-CorV on days 14, 90, and 180 were 6.81 (5.32-8.72), 1.77 (1.15-2.72), and 2.37 (1.62-3.47) respectively. We observed a similar pattern for specific antibody responses against S1 and RBD. We detected a rise in gamma interferon (IFN-γ), tumor necrosis factor (TNF-α), and interleukin 2 (IL-2) following stimulation with S antigen, particularly in the RCP group, and the flow cytometry examination showed an increase in the percentage of CD3 + /CD8 + lymphocytes. RCP and BBIBP-CorV had similar safety profiles; we identified no vaccine-related or unrelated deaths. CONCLUSIONS: BBIBP-CorV and RCP vaccines as booster doses are safe and provide a strong immune response that is more robust when the RCP vaccine is used. Heterologous vaccines are preferred as booster doses. TRIAL REGISTRATION: This study was registered with the Iranian Registry of Clinical Trial at www.irct.ir , IRCT20201214049709N4. Registered 29 November 2021.


COVID-19 Vaccines , Spike Glycoprotein, Coronavirus , Vaccines, Inactivated , Adult , Male , Humans , Adolescent , Middle Aged , Female , COVID-19 Vaccines/adverse effects , Iran , Antibodies, Neutralizing , Antibodies, Viral
2.
J Pharm Sci ; 112(12): 3012-3021, 2023 12.
Article En | MEDLINE | ID: mdl-37832918

BACKGROUND: This study explores the safety and immunogenicity of the Razi-Cov-Pars (RCP) SARS Cov-2 recombinant spike protein vaccine. METHOD: In a randomized, double-blind, placebo-controlled trial, adults aged 18-70 were randomly allocated to receive selected 10 µg/200 µl vaccine strengths or placebo (adjuvant). It included two intramuscular injections at days 0 and 21, followed by an intranasal dose at day 51. Immediate and delayed solicited local and systemic adverse reactions after each dose up to a week, and specific IgG antibodies against SARS Cov-2 spike antigens two weeks after the 2nd dose were assessed as primary outcomes. Secondary safety outcomes were abnormal laboratory findings and medically attended adverse events (MAAE) over six months follow up. Secondary immunogenicity outcomes were neutralizing antibody activity and cell-mediated immune response. RESULT: Between May 27th and July 15th, 2021, 500 participants were enrolled. Participants' mean (SD) age was 37.8 (9.0), and 67.0 % were male. No immediate adverse reaction was observed following the intervention. All solicited local and systemic adverse events were moderate (Grade I-II). Specific IgG antibody response against S antigen in the vaccine group was 5.28 times (95 %CI: 4.02-6.94) the placebo group with a 75 % seroconversion rate. During six months of follow-up, 8 SAEs were reported, unrelated to the study intervention. The participants sustained their acquired humoral responses at the end of the sixth month. The vaccine predominantly resulted in T-helper 1 cell-mediated immunity, CD8+ cytotoxic T-cell increase, and no increase in inflammatory IL-6 cytokine. CONCLUSION: RCP vaccine is safe and creates strong and durable humoral and cellular immunity. TRIAL REGISTRATION: (IRCT20201214049709N2).


COVID-19 , Severe Acute Respiratory Syndrome , Vaccines , Adult , Humans , Male , Female , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Antibodies, Neutralizing , Immunoglobulin G , Double-Blind Method , Immunogenicity, Vaccine , Antibodies, Viral
3.
Environ Res ; 237(Pt 2): 116878, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37579964

Breast cancer is one of the most common causes of death among women. Fluorescent labeling is an essential research and diagnostic tool in the detection of cancer cells. The development of inexpensive and easily accessible fluorescent probes for the detection of cancerous cells is of great importance. Herein we report a green and inexpensive method for extraction of natural anthocyanin fluorophore from Red Cabbage and demonstrate its application for fluorescent bioimaging of human epidermal growth factor receptor 2 (HER2) positive breast cancer cells using non-covalent conjugation of anthocyanin fluorophores to Trastuzumab antibody. In this work, the extracted anthocyanins were characterized by Fourier transform infrared spectroscopy (FTIR), Ultraviolet-Visible (UV-Vis) and fluorescent spectroscopy. The anthocyanin extract showed proper fluorescent intensity for microscopic fluorescent cell imaging, negligible photobleaching and no sign of cytotoxicity (more than 90% viability). The presence of hydroxy and carboxyl functional groups in the structure of anthocyanins provided the opportunity for the non-covalent conjugation of anthocyanins to antibodies. The fluorescent probe made by non-covalent conjugation of the anthocyanin fluorophores to Trastuzumab antibody was used for specific fluorescent imaging of HER2 receptors on HER2 positive breast cancer cells. This green fluorescent probe may have several future applications in biological diagnosis and bio-imaging techniques.

4.
Environ Res ; 234: 116467, 2023 10 01.
Article En | MEDLINE | ID: mdl-37343757

Gradually, loss of skin elasticity and elastic properties occurs after 30 years of age and will be associated with several changes, including creating wrinkles, skin laxity (sagging skin), and skin blemishes. In general, people all over the world are looking for ways to keep their facial skin young over time. There are several strategies to skin rejuvenate, including invasive and non-invasive methods. However, invasive methods have less popularity than non-invasive methods due to their need for specialist physicians (medical expertise), localized neuropathic pains for patients, the prevalence and incidence of skin infections, and high-cost clinical services. In the meantime, skin hydration is one of the simplest non-invasive methods for skin rejuvenation, and HA, with anti-aging and skin collagen-stimulating properties, has been introduced as a natural skin moisturizing agent. Therefore, since this composition maintains facial skin moisture and radiance, and improves its elasticity, it has always been considered by experts and specialist physicians. On the other hand, due to its lipophilic properties, hydrophilic macromolecules containing HA cannot pass through the stratum corneum. However, they have temporary and superficial softening effects on the skin. Hence, some nanocarriers have been suggested to overcome this problem and develop the properties and positive influences of HA on skin rejuvenation. Therefore, the present study aimed to introduce some new non-invasive approaches in facial skin rejuvenation, including applying liposomes, niosomes, ethosomes, and ionic liquids, to transport HA into the inner and deeper layers of the skin, including Dermis. In this review article, we examine non-invasive methods using nanoparticles to deliver HA to the epidermis and dermis of the skin for skin rejuvenation.


Hyaluronic Acid , Skin Aging , Humans , Rejuvenation , Skin , Face
5.
Environ Res ; 231(Pt 2): 116133, 2023 08 15.
Article En | MEDLINE | ID: mdl-37209981

Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.


Metals, Heavy , Nanostructures , Water Purification , Technology , Water Purification/methods , Hazardous Substances
6.
Talanta ; 260: 124630, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37178675

Methanol (MeOH) is a solvent and cleaning agent used in industry, but it is poisonous when ingested. The recommended release threshold for MeOH vapor is 200 ppm. We present a novel sensitive micro-conductometric MeOH biosensor created by grafting alcohol oxidase (AOX) onto electrospun polystyrene-poly(amidoamine) dendritic polymer blend nanofibers (PS-PAMAM-ESNFs) on interdigitated electrodes (IDEs). The analytical performance of the MeOH microsensor was evaluated using gaseous MeOH, ethanol, and acetone samples collected from the headspace above aqueous solution with known concentration. The sensor's response time (tRes) fluctuates from 13 s to 35 s from lower to higher concentrations. The conductometric sensor has a sensitivity of 150.53 µS.cm-1 (v/v) for MeOH and a detection limit of 100 ppm in the gas phase. The MeOH sensor is 7.3 times less sensitive to ethanol and 136.8 times less sensitive to acetone. The sensor was verified for detecting MeOH in commercial rubbing alcohol samples.

7.
Bioeng Transl Med ; 8(1): e10347, 2023 Jan.
Article En | MEDLINE | ID: mdl-36684103

A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon-based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon-based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.

8.
Environ Sci Pollut Res Int ; 30(14): 40327-40339, 2023 Mar.
Article En | MEDLINE | ID: mdl-36609970

A precise nano-scale biosensor was developed here to detect Hg2+ in aqueous media. Nitrogen-doped carbon nanospheres (NCS) created from the pyrolysis of melamine-formaldehyde resin were characterized by FESEM, XRD, Raman spectra, EDS, PL, UV-vis spectra, and N2 adsorption-desorption, and were used as a highly selective and sensitive probe for detecting Hg2+ in aqueous media. The sensitivity of NCS to Hg2+ was evaluated by photoluminescence intensity fluctuations under fluorescence emission in the vicinity of 390 nm with a λexc of 350 nm. The fluorescence intensity of the NCS probe weakened in the presence of Hg2+ owing to the effective fluorescence quenching by that, which is not corresponding to the special covalent liking between the ligand and the metal. The effects of the fluorescence nanoprobe concentration, pH, and sensing time were monitored to acquire the best conditions for determining Hg2+. Surprisingly, NCS revealed excellent selectivity and sensitivity towards Hg2+ in the samples containing Co2+, Na+, K+, Fe2+, Mn2+, Al3+, Pb2+, Ni2+, Ca2+, Cu2+, Mg2+, Cd2+, Cr3+, Li+, Cs+, and Ba2+. The fluorescence response was linearly proportional to Hg2+ concentration in 0.013-0.046 µM with a limit of detection of 9.58 nM. The in vitro and in vivo toxicological analyses confirmed the completely safe and biocompatible features of NCS, which provides promise for use for water, fruit, vegetable, and/or other forms of natural-connected materials exposed to Hg2+, with no significant toxicity noticed toward different cells/organs/tissues.


Mercury , Nanospheres , Fluorescent Dyes/chemistry , Mercury/analysis , Carbon/chemistry , Cell Line , Water , Spectrometry, Fluorescence
9.
Future Med Chem ; 14(21): 1561-1581, 2022 11.
Article En | MEDLINE | ID: mdl-36300415

Advancements in nanotechnology have resulted in the introduction of several nonviral delivery vectors for the nontoxic, efficient delivery of encapsulated mRNA-based vaccines. Lipid- and polymer-based nanoparticles (NP) have proven to be the most potent delivery systems, providing increased delivery efficiency and protection of mRNA molecules from degradation. Here, the authors provide an overview of the recent studies carried out using lipid NPs and their functionalized forms, polymeric and lipid-polymer hybrid nanocarriers utilized mainly for the encapsulation of mRNAs for gene and immune therapeutic applications. A microfluidic system as a prevalent methodology for the preparation of NPs with continuous flow enables NP size tuning, rapid mixing and production reproducibility. Continuous-flow microfluidic devices for lipid and polymeric encapsulated RNA NP production are specifically reviewed.


Lab-On-A-Chip Devices , Nanoparticles , RNA, Messenger , Reproducibility of Results , Polymers , Lipids , mRNA Vaccines
10.
Adv Colloid Interface Sci ; 308: 102771, 2022 Oct.
Article En | MEDLINE | ID: mdl-36113311

Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been extensively reviewed. Here, we review, classify, and discuss various synthesis strategies for novel MNSs used in medicine. Advanced applications of magnetic nanocomposites (MG-NCs), specifically magnetic nanostructures, are further systematically reviewed. In addition, the scientific and technical aspects of MG-NC used in medicine are discussed considering the requirements for the field. In summary, this review highlights the numerous opportunities and challenges associated with the use of MG-NCs as smart nanocomposites (NCs) in tissue engineering and regenerative medicine.


Nanocomposites , Tissue Engineering , Biocompatible Materials/chemistry , Magnetic Phenomena , Nanocomposites/chemistry , Nanotechnology , Regenerative Medicine
11.
Biomater Adv ; 140: 213077, 2022 Sep.
Article En | MEDLINE | ID: mdl-35952549

Overall, aptamers are special classes of nucleic acid-based macromolecules that are beginning to investigate because of their capability of avidity binding to a specific target for clinical use. Taking advantage of target-specific medicine led to more effective therapeutic and limitation of side effects of drugs. Herein, we discuss several aptamers and their binding capability and capacity for selecting tumor biomarkers and usage of them as targeting ligands for the functionalization of nanomaterials. We review recent applications based on aptamers and several nanoparticles to rise efficacy and develop carrier systems such as graphene oxide, folic acid, gold, mesopores silica, and various polymers and copolymer, polyethylene glycol, cyclodextrin, chitosan. The nanocarriers have been characterized by particle size, zeta potential, aptamer conjugation, and drug encapsulation efficiency. Hydrodynamic diameter and Zeta potential can used in order to monitor aptamers' crosslinking, in-vitro drug release, intracellular delivery of nanocarriers, and cellular cytotoxicity assay. Also, they are studied for cellular uptake and internalization to types of cancer cell lines such as colorectal, breast, prostate, leukemia and etc. The results are investigated in in-vivo cytotoxicity assay and cell viability assay. Targeted cancer therapy seems a good and promising strategy to overcome the systemic toxicity of chemotherapy.


Aptamers, Nucleotide , Nanoparticles , Neoplasms , Drug Delivery Systems/methods , Drug Liberation , Excipients , Humans , Male , Neoplasms/drug therapy , Polyethylene Glycols/chemistry , Polymers
12.
Expert Opin Drug Deliv ; 19(9): 1061-1080, 2022 09.
Article En | MEDLINE | ID: mdl-35953890

INTRODUCTION: Three-dimensional (3D) printing, also known as additive manufacturing (AM), is a modern technique/technology, which makes it possible to construct 3D objects from computer-aided design (CAD) digital models. This technology can be used in the progress of drug delivery systems, where porosity has played important role in attaining an acceptable level of biocompatibility and biodegradability with improved therapeutic effects. 3D printing may also provide the user possibility to control the dosage of each ingredient in order to a specific purpose, and makes it probable to improve the formulation of drug delivery systems. AREAS COVERED: This article covers the 3D printing technologies, bioactive materials including natural and synthetic polymers as well as some ceramics and minerals and their roles in drug delivery systems. EXPERT OPINION: This technology is feasible to fabricate drug products by incorporating multiple drugs in different parts in such a mode that these drugs can release from the section at a predetermined rate. Furthermore, this 3D printing technology has the potential to transform personalized therapy to various age-groups by design flexibility and precise dosing. In recent years, the potential use of this technology can be realized in a clinical situation where patients will acquire individualized medicine as per their requirement.


Drug Delivery Systems , Printing, Three-Dimensional , Humans , Pharmaceutical Preparations , Polymers , Precision Medicine
13.
Chem Biol Drug Des ; 100(5): 699-721, 2022 11.
Article En | MEDLINE | ID: mdl-36002440

Application of materials capable of energy harvesting to increase the efficiency and environmental adaptability is sometimes reflected in the ability of discovery of some traces in an environment-either experimentally or computationally-to enlarge practical application window. The emergence of computational methods, particularly computer-aided drug discovery (CADD), provides ample opportunities for the rapid discovery and development of unprecedented drugs. The expensive and time-consuming process of traditional drug discovery is no longer feasible, for nowadays the identification of potential drug candidates is much easier for therapeutic targets through elaborate in silico approaches, allowing the prediction of the toxicity of drugs, such as drug repositioning (DR) and chemical genomics (chemogenomics). Coronaviruses (CoVs) are cross-species viruses that are able to spread expeditiously from the into new host species, which in turn cause epidemic diseases. In this sense, this review furnishes an outline of computational strategies and their applications in drug discovery. A special focus is placed on chemogenomics and DR as unique and emerging system-based disciplines on CoV drug and target discovery to model protein networks against a library of compounds. Furthermore, to demonstrate the special advantages of CADD methods in rapidly finding a drug for this deadly virus, numerous examples of the recent achievements grounded on molecular docking, chemogenomics, and DR are reported, analyzed, and interpreted in detail. It is believed that the outcome of this review assists developers of energy harvesting materials and systems for detection of future unexpected kinds of CoVs or other variants.


COVID-19 Drug Treatment , Drug Repositioning , Computers , Drug Design , Drug Discovery/methods , Humans , Molecular Docking Simulation
14.
Adv Healthc Mater ; 11(20): e2201583, 2022 10.
Article En | MEDLINE | ID: mdl-35916145

Conventional drug delivery systems are challenged by concerns related to systemic toxicity, repetitive doses, drug concentrations fluctuation, and adverse effects. Various drug delivery systems are developed to overcome these limitations. Nanomaterials are employed in a variety of biomedical applications such as therapeutics delivery, cancer therapy, and tissue engineering. Physiochemical nanoparticle assembly techniques involve the application of solvents and potentially harmful chemicals, commonly at high temperatures. Genetically engineered organisms have the potential to be used as promising candidates for greener, efficient, and more adaptable platforms for the synthesis and assembly of nanomaterials. Genetically engineered carriers are precisely designed and constructed in shape and size, enabling precise control over drug attachment sites. The high accuracy of these novel advanced materials, biocompatibility, and stimuli-responsiveness, elucidate their emerging application in controlled drug delivery. The current article represents the research progress in developing various genetically engineered carriers. Organic-based nanoparticles including cellulose, collagen, silk-like polymers, elastin-like protein, silk-elastin-like protein, and inorganic-based nanoparticles are discussed in detail. Afterward, viral-based carriers are classified, and their potential for targeted therapeutics delivery is highlighted. Finally, the challenges and prospects of these delivery systems are concluded.


Drug Carriers , Nanoparticle Drug Delivery System , Cellulose , Drug Carriers/chemistry , Elastin , Nanoparticle Drug Delivery System/chemistry , Polymers , Silk
15.
J Control Release ; 350: 175-192, 2022 10.
Article En | MEDLINE | ID: mdl-35914615

Chitosan is a natural polymer with acceptable biocompatibility, biodegradability, and mechanical stability; hence, it has been widely appraised for drug and gene delivery applications. However, there has been no comprehensive assessment to tailor-make chitosan cross-linkers of various types and functionalities as well as complex chitosan-based semi- and full-interpenetrating networks for drug delivery systems (DDSs). Herein, various fabrication methods developed for chitosan hydrogels are deliberated, including chitosan crosslinking with and without diverse cross-linkers. Tripolyphosphate, genipin and multi-functional aldehydes, carboxylic acids, and epoxides are common cross-linkers used in developing biomedical chitosan for DDSs. Methods deployed for modifying the properties and performance of chitosan hydrogels, via their composite production (semi- and full-interpenetrating networks), are also cogitated here. In addition, recent advances in the fabrication of advanced chitosan hydrogels for drug delivery applications such as oral drug delivery, transdermal drug delivery, and cancer therapy are discussed. Lastly, thoughts on what is needed for the chitosan field to continue to grow is also debated in this comprehensive review article.


Chitosan , Aldehydes , Carboxylic Acids , Drug Delivery Systems/methods , Epoxy Compounds , Hydrogels , Polymers
16.
Chemosphere ; 306: 135578, 2022 Nov.
Article En | MEDLINE | ID: mdl-35798154

Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in the treatment/detection may lead to the presence of pCRISPR in the blood. Therefore, the detection and evaluation of their trace concentrations are of critical importance. CaZnO-based nanoghosts (NGs) were synthesized with the assistance of a high-gravity technique at a 1,800 MHz field, capitalizing on the use of Rosmarinus officinalis leaf extract as the templating agent. A complete chemical, physical and biological investigation revealed that the synthesized NGs presented similar morphological features to the mesenchymal stem cells (MSCs), resulting in excellent biocompatibility, interaction with ssDNA- and/or pCRISPR-surface, through various chemical and physical mechanisms. This comprise the unprecedented synthesis of a fully inorganic nanostructure with behavior that is similar to MSCs. Furthermore, the endowed exceptional ability of inorganic NGs for detective sensing/folding of ssDNA and pCRISPR and recombinant SARS-CoV-2 spike antigen (RSCSA), along with in-situ hydrogen peroxide detection on the HEK-293 and HeLa cell lines, was discerned. On average, they displayed a high drug loading capacity of 55%, and the acceptable internalizations inside the HT-29 cell lines affirmed the anticipated MSCs-like behavior of these inorganic-NGs.


DNA, Single-Stranded , Doxorubicin , Nanoparticle Drug Delivery System , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Calcium , DNA, Single-Stranded/analysis , Doxorubicin/administration & dosage , HEK293 Cells , HeLa Cells , Humans , Spike Glycoprotein, Coronavirus/analysis , Spike Glycoprotein, Coronavirus/genetics , Zinc Oxide
17.
J Hazard Mater ; 436: 129259, 2022 08 15.
Article En | MEDLINE | ID: mdl-35739778

Is it possible to accelerate cell internalization by hybridization of nanomaterials? Herein we support the realization of using metal-organic frameworks (MOFs) with the assistance of rigid porphyrin structure (H2TMP) aimed at drug loading, drug release, relative cell viability, and targeted in vitro drug delivery. There are several MOFs, i.e., UiO-66-NH2 (125 ± 12.5 nm), UiO-66-NH2 @H2TMP (160 ± 14 nm), UiO-66-NH2 @H2TMP@DOX, and UiO-66-NH2 @H2TMP@DOX@RO were synthesized and characterized applying HEK-293, HT-29, MCF-7, and MCF-10A cell lines. MTT investigations proved a significantly higher relative cell viability for H2TMP-aided leaf-extract-coated nanocarriers (above 62 % relative cell viability). Furthermore, the rigid H2TMP structure improved drug loading capacity by 24 % through an enhanced hydrogen bond, van der Waals, and π-π interactions. The in vitro targeted drug delivery experiments were conducted on HT-29 and MCF-7 cell lines. First, nanocarriers were treated with HT-29 cells, where UiO-66-NH2 @H2TMP@DOX@RO appeared as the best nanocarrier. Then, the selected nanocarrier was extracted from the HT-29 cell line and treated with the MCF-7 cell line. For the first time, the DOX remained inside the UiO-66-NH2 @H2TMP@DOX@RO after successful delivery to the HT-29 cell lines was observed on the MCF-7 cell line, and the second targeted drug delivery was performed. The results of this survey can enlighten the future ahead of cell internalization in MOF-based hybrid nanostructures.


Metal-Organic Frameworks , Organometallic Compounds , Porphyrins , HEK293 Cells , Humans , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Organometallic Compounds/pharmacology , Phthalic Acids , Porphyrins/pharmacology
18.
BMC Public Health ; 22(1): 1152, 2022 06 09.
Article En | MEDLINE | ID: mdl-35681169

BACKGROUND: Mustard gas (MG) is one of the most widely used chemical weapons in the past century. However, little information exists concerning long-term mortality from MG exposure. In this study, we investigated mortality rate among civilian people exposed to MG during Iran-Iraq war in Sardasht in Iran after 32 years.  METHODS: In this retrospective cohort study, data of people exposed to MG in Sardasht in 1987 were extracted from the Veterans and Martyr Affair Foundation of Iran up to March 20, 2019. Mortality rate, cumulative mortality and standardized mortality ratio with 95% confidence interval were calculated to explain mortality in the cohort, and then compared with general Iranian population. Cox regression analysis was used to indicate factor affecting the risk of death in the cohort.  RESULTS: Out of 1,203 exposed people at the beginning of the period, 148 people died by the end of the study, with an average age of 66.42 at the time of death. Total person-years of the people up to end of the study were 38,198.63 and mortality rate was equal to 387 per 100,000 persons-years. Total number of observed deaths was less than expected death and the all-cause standardized mortality ratio (SMR) was determined as 0.680 (95% CI: 0.574 - 0.798). Cause-specific SMR showed that observed death due to respiratory diseases was higher than expected (SMR: 1.75) (95% CI: 1.145 - 2.569). The results of univariate and multivariate cox regression analysis showed that increasing age and having severe late complications in lung were associated with increased risk of death among people in the cohort. CONCLUSION: In general, this result indicated that acute exposure to MG, even without wearing protective clothing and masks, could not increase all-cause mortality after 32 years if accompanied by special and ongoing care for those exposed.


Chemical Warfare Agents , Mustard Gas , Aged , Chemical Warfare Agents/adverse effects , Cohort Studies , Humans , Iran/epidemiology , Iraq , Mustard Gas/adverse effects , Retrospective Studies
19.
BMC Biomed Eng ; 4(1): 5, 2022 May 20.
Article En | MEDLINE | ID: mdl-35596200

BACKGROUND: Gluten, a food allergen, is available in foods derived from wheat, rye and barley. It damages the small intestine and causes celiac disease. Herein, we designed a rapid immunochromatographic lateral flow test assay for detecting the gluten contents of raw materials. In this rapid test, the presence of gluten was screened through the capturing of gliadin (a toxic component of gluten) by two identical gliadin monoclonal antibodies. One of the antibodies was immobilized on the membrane in the test zone as a capture reagent. The other antibody was labeled with gold nanoparticles (AuNPs) as a detector reagent. RESULTS: Gold nanoparticles with a size of about 20 nm were synthesized and conjugated to the gliadin monoclonal antibodies. The detection limit of the experimental assay was 20 ppm and positive results were visualized after 15 min using only 40 µL of the extracted sample for each test. Analysis of different flour samples identified the best sensitivity and specificity of the lateral flow test strip (LFTS). CONCLUSION: The experimental LFTS is an easy-to-use and rapid method for the screening of gluten level in raw materials. The LFTS may be employed to ensure the safety of foods.

20.
Sci Total Environ ; 825: 153902, 2022 Jun 15.
Article En | MEDLINE | ID: mdl-35182622

Fast, efficient, and accurate detection of SARS-CoV-2 spike antigen is pivotal to control the spread and reduce the mortality of COVID-19. Nevertheless, the sensitivity of available nanobiosensors to detect recombinant SARS-CoV-2 spike antigen seems insufficient. As a proof-of-concept, MOF-5/CoNi2S4 is developed as a low-cost, safe, and bioactive hybrid nanostructure via the one-pot high-gravity protocol. Then, the porphyrin, H2TMP, was attached to the surface of the synthesized nanomaterial to increase the porosity for efficient detection of recombinant SARS-CoV-2 spike antigen. AFM results approved roughness in different ranges, including 0.54 to 0.74 µm and 0.78 to ≈0.80 µm, showing good physical interactions with the recombinant SARS-CoV-2 spike antigen. MTT assay was performed and compared to the conventional synthesis methods, including hydrothermal, solvothermal, and microwave-assisted methods. The synthesized nanodevices demonstrated above 88% relative cell viability after 24 h and even 48 h of treatment. Besides, the ability of the synthesized nanomaterials to detect the recombinant SARS-CoV-2 spike antigen was investigated, with a detection limit of 5 nM. The in-situ synthesized nanoplatforms exhibited low cytotoxicity, high biocompatibility, and appropriate tunability. The fabricated nanosystems seem promising for future surveys as potential platforms to be integrated into biosensors.


Biosensing Techniques , COVID-19 , Metal-Organic Frameworks , Biosensing Techniques/methods , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
...