Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39144453

RESUMEN

The abyssomicins are a structurally intriguing family of bioactive natural products that include compounds with potent antibacterial, antitumour and antiviral activities. The biosynthesis of the characteristic abyssomicin spirotetronate core occurs via an enzyme-catalysed intramolecular Diels-Alder reaction, which proceeds via one of two distinct stereochemical pathways to generate products differing in configuration at the C15 spirocentre. Using the purified spirotetronate cyclases AbyU (from abyssomicin C/atrop-abyssomicin C biosynthesis) and AbmU (from abyssomicin 2/neoabyssomicin biosynthesis), in combination with synthetic substrate analogues, here we show that stereoselectivity in the spirotetronate-forming [4 + 2]-cycloaddition is controlled by a combination of factors attributable to both the enzyme and substrate. Furthermore, an achiral substrate was enzymatically cyclised to a single enantiomer of a spirocyclic product. X-ray crystal structures, molecular dynamics simulations, and assessment of substrate binding affinity and reactivity in both AbyU and AbmU establish the molecular determinants of stereochemical control in this important class of biocatalysts.

2.
Extremophiles ; 28(3): 42, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215799

RESUMEN

Methanogenic archaea are chemolithotrophic prokaryotes that can reduce carbon dioxide with hydrogen gas to form methane. These microorganisms make a significant contribution to the global carbon cycle, with methanogenic archaea from anoxic environments estimated to contribute > 500 million tons of global methane annually. Archaeal methanogenesis is dependent on the methanofurans; aminomethylfuran containing coenzymes that act as the primary C1 acceptor molecule during carbon dioxide fixation. Although the biosynthetic pathway to the methanofurans has been elucidated, structural adaptations which confer thermotolerance to Mfn enzymes from extremophilic archaea are yet to be investigated. Here we focus on the methanofuran biosynthetic enzyme MfnB, which catalyses the condensation of two molecules of glyceralde-3-phosphate to form 4­(hydroxymethyl)-2-furancarboxaldehyde-phosphate. In this study, MfnB enzymes from the hyperthermophile Methanocaldococcus jannaschii and the mesophile Methanococcus maripaludis have been recombinantly overexpressed and purified to homogeneity. Thermal unfolding studies, together with steady-state kinetic assays, demonstrate thermoadaptation in the M. jannaschii enzyme. Molecular dynamics simulations have been used to provide a structural explanation for the observed properties. These reveal a greater number of side chain interactions in the M. jannaschii enzyme, which may confer protection from heating effects by enforcing spatial residue constraints.


Asunto(s)
Proteínas Arqueales , Estabilidad de Enzimas , Methanocaldococcus , Methanocaldococcus/enzimología , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/química , Methanococcus/enzimología , Termotolerancia , Aldehído-Liasas/metabolismo , Aldehído-Liasas/genética , Aldehído-Liasas/química , Calor , Simulación de Dinámica Molecular
3.
Chem Sci ; 15(29): 11572-11583, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39055018

RESUMEN

The Diels-Alder reaction is one of the most effective methods for the synthesis of substituted cyclohexenes. The development of protein catalysts for this reaction remains a major priority, affording new sustainable routes to high value target molecules. Whilst a small number of natural enzymes have been shown capable of catalysing [4 + 2] cycloadditions, there is a need for significant mechanistic understanding of how these prospective Diels-Alderases promote catalysis to underpin their development as biocatalysts for use in synthesis. Here we present a molecular description of the complete reaction cycle of the bona fide natural Diels-Alderase AbyU, which catalyses formation of the spirotetronate skeleton of the antibiotic abyssomicin C. This description is derived from X-ray crystallographic studies of AbyU in complex with a non-transformable synthetic substrate analogue, together with transient kinetic analyses of the AbyU catalysed reaction and computational reaction simulations. These studies reveal the mechanistic intricacies of this enzyme system and establish a foundation for the informed reengineering of AbyU and related biocatalysts.

4.
Microbiology (Reading) ; 170(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39073401

RESUMEN

Sponges (phylum Porifera) harbour specific microbial communities that drive the ecology and evolution of the host. Understanding the structure and dynamics of these communities is emerging as a primary focus in marine microbial ecology research. Much of the work to date has focused on sponges from warm and shallow coastal waters, while sponges from the deep ocean remain less well studied. Here, we present a metataxonomic analysis of the microbial consortia associated with 23 individual deep-sea sponges. We identify a high abundance of archaea relative to bacteria across these communities, with certain sponge microbiomes comprising more than 90 % archaea. Specifically, the archaeal family Nitrosopumilaceae is prolific, comprising over 99 % of all archaeal reads. Our analysis revealed that sponge microbial communities reflect the host sponge phylogeny, indicating a key role for host taxonomy in defining microbiome composition. Our work confirms the contribution of both evolutionary and environmental processes to the composition of microbial communities in deep-sea sponges.


Asunto(s)
Archaea , Bacterias , Microbiota , Filogenia , Poríferos , Poríferos/microbiología , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Animales , Océano Atlántico , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Agua de Mar/microbiología , ARN Ribosómico 16S/genética , Biodiversidad
5.
Angew Chem Int Ed Engl ; 62(47): e202312514, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37768840

RESUMEN

Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA-A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.


Asunto(s)
Mupirocina , Sintasas Poliquetidas , Sintasas Poliquetidas/metabolismo , Hidroxilación , Antibacterianos/química
6.
Proc Natl Acad Sci U S A ; 120(31): e2306046120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487099

RESUMEN

The electron-conducting circuitry of life represents an as-yet untapped resource of exquisite, nanoscale biomolecular engineering. Here, we report the characterization and structure of a de novo diheme "maquette" protein, 4D2, which we subsequently use to create an expanded, modular platform for heme protein design. A well-folded monoheme variant was created by computational redesign, which was then utilized for the experimental validation of continuum electrostatic redox potential calculations. This demonstrates how fundamental biophysical properties can be predicted and fine-tuned. 4D2 was then extended into a tetraheme helical bundle, representing a 7 nm molecular wire. Despite a molecular weight of only 24 kDa, electron cryomicroscopy illustrated a remarkable level of detail, indicating the positioning of the secondary structure and the heme cofactors. This robust, expressible, highly thermostable and readily designable modular platform presents a valuable resource for redox protein design and the future construction of artificial electron-conducting circuitry.


Asunto(s)
Hemoproteínas , Biofisica , Microscopía por Crioelectrón , Electrones , Oxidación-Reducción
7.
Chembiochem ; 24(14): e202300382, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37305956

RESUMEN

Stereoselective carbon-carbon bond forming reactions are quintessential transformations in organic synthesis. One example is the Diels-Alder reaction, a [4+2] cycloaddition between a conjugated diene and a dienophile to form cyclohexenes. The development of biocatalysts for this reaction is paramount for unlocking sustainable routes to a plethora of important molecules. To obtain a comprehensive understanding of naturally evolved [4+2] cyclases, and to identify hitherto uncharacterised biocatalysts for this reaction, we constructed a library comprising forty-five enzymes with reported or predicted [4+2] cycloaddition activity. Thirty-one library members were successfully produced in recombinant form. In vitro assays employing a synthetic substrate incorporating a diene and a dienophile revealed broad-ranging cycloaddition activity amongst these polypeptides. The hypothetical protein Cyc15 was found to catalyse an intramolecular cycloaddition to generate a novel spirotetronate. The crystal structure of this enzyme, along with docking studies, establishes the basis for stereoselectivity in Cyc15, as compared to other spirotetronate cyclases.


Asunto(s)
Carbono , Proteínas , Catálisis , Reacción de Cicloadición , Técnicas de Química Sintética
8.
Microb Genom ; 9(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37166955

RESUMEN

The deep sea is known to host novel bacteria with the potential to produce a diverse array of undiscovered natural products. Thus, understanding these bacteria is of broad interest in ecology and could also underpin applied drug discovery, specifically in the area of antimicrobials. Here, we isolate a new strain of Streptomyces from the tissue of the deep-sea sponge Polymastia corticata collected at a depth of 1869 m from the Gramberg Seamount in the Atlantic Ocean. This strain, which was given the initial designation A15ISP2-DRY2T, has a genome size of 9.29 Mb with a G+C content of 70.83 mol%. Phylogenomics determined that A15ISP2-DRY2T represents a novel species within the genus Streptomyces as part of the Streptomyces aurantiacus clade. The biosynthetic potential of A15ISP2-DRY2T was assessed relative to other members of the S. aurantiacus clade via comparative gene cluster family (GCF) analysis. This revealed a clear congruent relationship between phylogeny and GCF content. A15ISP2-DRY2T contains six unique GCFs absent elsewhere in the clade. Culture-based assays were used to demonstrate the antibacterial activity of A15ISP2-DRY2T against two drug-resistant human pathogens. Thus, we determine A15ISP2-DRY2T to be a novel bacterial species with considerable biosynthetic potential and propose the systematic name 'Streptomyces ortus' sp. nov.


Asunto(s)
Poríferos , Streptomyces , Streptomyces/química , Streptomyces/clasificación , Streptomyces/aislamiento & purificación , Agua de Mar/microbiología , Microbiología del Agua , Poríferos/microbiología , Animales , Composición de Base , Genoma Bacteriano
10.
Proteins ; 91(8): 1007-1020, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36912614

RESUMEN

Bacterial fibrillar adhesins are specialized extracellular polypeptides that promote the attachment of bacteria to the surfaces of other cells or materials. Adhesin-mediated interactions are critical for the establishment and persistence of stable bacterial populations within diverse environmental niches and are important determinants of virulence. The fibronectin (Fn)-binding fibrillar adhesin CshA, and its paralogue CshB, play important roles in host colonization by the oral commensal and opportunistic pathogen Streptococcus gordonii. As paralogues are often catalysts for functional diversification, we have probed the early stages of structural and functional divergence in Csh proteins by determining the X-ray crystal structure of the CshB adhesive domain NR2 and characterizing its Fn-binding properties in vitro. Despite sharing a common fold, CshB_NR2 displays an ~1.7-fold reduction in Fn-binding affinity relative to CshA_NR2. This correlates with reduced electrostatic charge in the Fn-binding cleft. Complementary bioinformatic studies reveal that homologues of CshA/B_NR2 domains are widely distributed in both Gram-positive and Gram-negative bacteria, where they are found housed within functionally cryptic multi-domain polypeptides. Our findings are consistent with the classification of Csh adhesins and their relatives as members of the recently defined polymer adhesin domain (PAD) family of bacterial proteins.


Asunto(s)
Antibacterianos , Proteínas de la Membrana , Ligandos , Proteínas de la Membrana/química , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/química
11.
Angew Chem Int Ed Engl ; 62(3): e202213053, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36314667

RESUMEN

Abyssomicin C and its atropisomer are potent inhibitors of bacterial folate metabolism. They possess complex polycyclic structures, and their biosynthesis has been shown to involve several unusual enzymatic transformations. Using a combination of synthesis and in vitro assays we reveal that AbyV, a cytochrome P450 enzyme from the aby gene cluster, catalyses a key late-stage epoxidation required for the installation of the characteristic ether-bridged core of abyssomicin C. The X-ray crystal structure of AbyV has been determined, which in combination with molecular dynamics simulations provides a structural framework for our functional data. This work demonstrates the power of combining selective carbon-13 labelling with NMR spectroscopy as a sensitive tool to interrogate enzyme-catalysed reactions in vitro with no need for purification.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Sistema Enzimático del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Simulación de Dinámica Molecular , Metabolismo Secundario
12.
Angew Chem Weinheim Bergstr Ger ; 135(47): e202312514, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38515435

RESUMEN

Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA-A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.

13.
Angew Chem Weinheim Bergstr Ger ; 135(3): e202213053, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38516347

RESUMEN

Abyssomicin C and its atropisomer are potent inhibitors of bacterial folate metabolism. They possess complex polycyclic structures, and their biosynthesis has been shown to involve several unusual enzymatic transformations. Using a combination of synthesis and in vitro assays we reveal that AbyV, a cytochrome P450 enzyme from the aby gene cluster, catalyses a key late-stage epoxidation required for the installation of the characteristic ether-bridged core of abyssomicin C. The X-ray crystal structure of AbyV has been determined, which in combination with molecular dynamics simulations provides a structural framework for our functional data. This work demonstrates the power of combining selective carbon-13 labelling with NMR spectroscopy as a sensitive tool to interrogate enzyme-catalysed reactions in vitro with no need for purification.

14.
Angew Chem Int Ed Engl ; 61(50): e202212393, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36227272

RESUMEN

Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).


Asunto(s)
Antibacterianos , Mupirocina , Antibacterianos/química , Proteína Transportadora de Acilo/metabolismo , Sintasas Poliquetidas/metabolismo
15.
Antibiotics (Basel) ; 11(9)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36140015

RESUMEN

Antibiotic resistance is a global health crisis. New classes of antibiotics that can treat drug-resistant infections are urgently needed. To communicate this message, researchers have used antibiotic development timelines, but these are often contradictory or imprecise. We conducted a systematic literature review to produce an antibiotic timeline that incorporates the dates of discovery, first use, and initial reports of the emergence of resistance for the 38 classes of clinically used antibiotics. From our timeline, we derive lessons for identifying new antibiotics that are less prone to resistance. These include a required focus on molecules that exhibit multiple modes of action, possess unusually long 'resistance windows', or those that engage cellular targets whose molecular architectures are at least in part decoupled from evolutionary pressures. Our analysis also further highlights the importance of safeguarding antibiotics as a mechanism for mitigating the development of resistance. We have made our data and sources freely available so that the research community can adapt them to their own needs.

16.
Protein Expr Purif ; 190: 106011, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34737041

RESUMEN

Many opportunistic bacteria that infect the upper respiratory tract decorate their cell surface with phosphorylcholine to support colonisation and outgrowth. These surface modifications require the active import of choline from the host environment, a process thought to be mediated by a family of dedicated integral membrane proteins that act as choline permeases. Here, we present the expression and purification of the archetype of these choline transporters, LicB from Haemophilus influenzae. We show that LicB can be recombinantly produced in Escherichia coli and purified to homogeneity in a stable, folded state using the detergent n-dodecyl-ß-d-maltopyranoside. Equilibrium binding studies with the fluorescent ligand dansylcholine suggest that LicB is selective towards choline, with reduced affinity for acetylcholine and no apparent activity towards other small molecules including glycine, carnitine and betaine. We also identify a conserved sequence motif within the LicB family and show that mutations within this motif compromise protein structure and function. Our results are consistent with previous observations that LicB is a specific high-affinity choline transporter, and provide an experimental platform for further studies of this permease family.


Asunto(s)
Proteínas Bacterianas , Expresión Génica , Haemophilus influenzae/genética , Proteínas de Transporte de Membrana , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Haemophilus influenzae/enzimología , Proteínas de Transporte de Membrana/biosíntesis , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
17.
Angew Chem Weinheim Bergstr Ger ; 134(50): e202212393, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38505625

RESUMEN

Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).

18.
Mar Drugs ; 19(2)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670308

RESUMEN

To tackle the growing problem of antibiotic resistance, it is essential to identify new bioactive compounds that are effective against resistant microbes and safe to use. Natural products and their derivatives are, and will continue to be, an important source of these molecules. Sea sponges harbour a diverse microbiome that co-exists with the sponge, and these bacterial communities produce a rich array of bioactive metabolites for protection and resource competition. For these reasons, the sponge microbiota constitutes a potential source of clinically relevant natural products. To date, efforts in bioprospecting for these compounds have focused predominantly on sponge specimens isolated from shallow water, with much still to be learned about samples from the deep sea. Here we report the isolation of a new Micromonospora strain, designated 28ISP2-46T, recovered from the microbiome of a mid-Atlantic deep-sea sponge. Whole-genome sequencing reveals the capacity of this bacterium to produce a diverse array of natural products, including kosinostatin and isoquinocycline B, which exhibit both antibiotic and antitumour properties. Both compounds were isolated from 28ISP2-46T fermentation broths and were found to be effective against a plethora of multidrug-resistant clinical isolates. This study suggests that the marine production of isoquinocyclines may be more widespread than previously supposed and demonstrates the value of targeting the deep-sea sponge microbiome as a source of novel microbial life with exploitable biosynthetic potential.


Asunto(s)
Antibacterianos/aislamiento & purificación , Microbiota , Micromonospora/aislamiento & purificación , Poríferos/microbiología , Animales , Antibacterianos/farmacología , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Océano Atlántico , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Secuenciación Completa del Genoma
19.
FEBS Lett ; 595(1): 133-144, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33043457

RESUMEN

Menisporopsin A is a fungal bioactive macrocyclic polylactone, the biosynthesis of which requires only reducing (R) and nonreducing (NR) polyketide synthases (PKSs) to guide a series of esterification and cyclolactonization reactions. There is no structural information pertaining to these PKSs. Here, we report the solution characterization of singlet and doublet acyl carrier protein (ACP2 and ACP1 -ACP2 )-thioesterase (TE) domains from NR-PKS involved in menisporopsin A biosynthesis. Small-angle X-ray scattering (SAXS) studies in combination with homology modelling reveal that these polypeptides adopt a distinctive beads-on-a-string configuration, characterized by the presence of highly flexible interdomain linkers. These models provide a platform for studying domain organization and interdomain interactions in fungal NR-PKSs, which may be of value in directing the design of functionally optimized polyketide scaffolds.


Asunto(s)
Proteína Transportadora de Acilo/química , Hongos/enzimología , Sintasas Poliquetidas/química , Tioléster Hidrolasas/química , Dicroismo Circular , Macrólidos/química , Simulación de Dinámica Molecular , Dominios Proteicos , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
20.
Sci Rep ; 10(1): 15323, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948786

RESUMEN

Complex polyketides of bacterial origin are biosynthesised by giant assembly-line like megaenzymes of the type 1 modular polyketide synthase (PKS) class. The trans-AT family of modular PKSs, whose biosynthetic frameworks diverge significantly from those of the archetypal cis-AT type systems represent a new paradigm in natural product enzymology. One of the most distinctive enzymatic features common to trans-AT PKSs is their ability to introduce methyl groups at positions ß to the thiol ester in the growing polyketide chain. This activity is achieved through the action of a five protein HCS cassette, comprising a ketosynthase, a 3-hydroxy-3-methylglutaryl-CoA synthase, a dehydratase, a decarboxylase and a dedicated acyl carrier protein. Here we report a molecular level description, achieved using a combination of X-ray crystallography, in vitro enzyme assays and site-directed mutagenesis, of the bacillaene synthase dehydratase/decarboxylase enzyme couple PksH/PksI, responsible for the final two steps in ß-methyl branch installation in this trans-AT PKS. Our work provides detailed mechanistic insight into this biosynthetic peculiarity and establishes a molecular framework for HCS cassette enzyme exploitation and manipulation, which has future potential value in guiding efforts in the targeted synthesis of functionally optimised 'non-natural' natural products.


Asunto(s)
Carboxiliasas/metabolismo , Hidroliasas/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Polienos/metabolismo , Sintasas Poliquetidas/genética , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA