Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38931870

RESUMEN

Known for its natural bio-compounds and therapeutic properties, hemp is being utilized in the development of skin products. These products offer a wide range of applications and benefits in the fields of natural bio-compounds, pharmaceutical technology, topical delivery systems, and cosmeceuticals. This manuscript deals with hemp actives, such as cannabinoids, terpenes, and flavonoids, and their diverse biological properties relative to topical application, including anti-inflammatory, antimicrobial, and antioxidant effects. Also, the paper reviews strategies to overcome poor penetration of hemp actives, as well as the integration of hemp actives in cosmeceuticals that provide natural and sustainable alternatives to traditional skincare products offering a range of benefits, including anti-aging, moisturizing, and soothing properties. The review aims to provide a comprehensive understanding of the development and manufacturing processes of skin products containing hemp actives. By delving into the science behind hemp-based products, the paper provides valuable insights into the potential of hemp as a versatile ingredient in the pharmaceutical and cosmetic industries. The utilization of hemp in these innovative products not only offers therapeutic benefits but also promotes natural and sustainable approaches to skincare.

2.
World J Microbiol Biotechnol ; 40(5): 162, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613584

RESUMEN

Chemical pesticides and fertilizers are used in agricultural production worldwide to prevent damage from plant pathogenic microorganisms, insects, and nematodes, to minimize crop losses and to preserve crop quality. However, the use of chemical pesticides and fertilizers can severely pollute soil, water, and air, posing risks to the environment and human health. Consequently, developing new, alternative, environment-friendly microbial soil treatment interventions for plant protection and crop yield increase has become indispensable. Members of the filamentous fungal genus Trichoderma (Ascomycota, Sordariomycetes, Hypocreales) have long been known as efficient antagonists of plant pathogenic microorganisms based on various beneficial traits and abilities of these fungi. This minireview aims to discuss the advances in the field of Trichoderma-containing multicomponent microbiological inoculants based on recent experimental updates. Trichoderma strains can be combined with each other, with other fungi and/or with beneficial bacteria. The development and field performance of such inoculants will be addressed, focusing on the complementarity, synergy, and compatibility of their microbial components.


Asunto(s)
Inoculantes Agrícolas , Plaguicidas , Trichoderma , Humanos , Fertilizantes , Suelo
3.
Microorganisms ; 11(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36985388

RESUMEN

Soil pollution with heavy metals is a serious threat to the environment. However, soils polluted with heavy metals are considered good sources of native metal-resistant Trichoderma strains. Trichoderma spp. are free-living fungi commonly isolated from different ecosystems, establishing endophytic associations with plants. They have important ecological and biotechnological roles due to their production of a wide range of secondary metabolites, thus regulating plant growth and development or inducing resistance to plant pathogens. In this work we used indigenous Trichoderma strains that were previously isolated from different soil types to determine their tolerance to increased copper and nickel concentrations as well as mechanisms of metal removal. The concentrations of bioavailable metal concentrations were determined after extraction with diethylene-triamine pentaacetate (DTPA)-extractable metals (Cd, Cr, Co, Cu, Pb, Mn, Ni, and Zn) from the soil samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). Two indigenous T. harzianum strains were selected for copper tolerance, and three indigenous T. longibrachiatum strains were selected for nickel tolerance tests. Strains were isolated from the soils with the highest and among the lowest DTPA-extractable metal concentrations to determine whether the adaptation to different concentrations of metals affects the mechanisms of remediation. Mechanisms of metal removal were determined using Fourier-transform infrared spectroscopy (FTIR) and X-ray fluorescence spectroscopy (XRF), non-destructive methods characterized by high measurement speed with little or no need for sample preparation and very low costs. Increased DTPA-extractable metal content for nickel and copper was detected in the soil samples above the target value (TV), and for nickel above the soil remediation intervention values (SRIVs), for total metal concentrations which were previously determined. The SRIV is a threshold of metal concentrations indicating a serious soil contamination, thus confirming the need for soil remediation. The use of FTIR and XRF methods revealed that the presence of both biosorption and accumulation of metals in the Trichoderma cells, providing good bioremediation potential for Ni and Cu.

4.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203436

RESUMEN

The beneficial role of fungi from the Trichoderma genus and its secondary metabolites in promoting plant growth, uptake and use efficiency of macronutrients and oligo/micro-nutrients, activation of plant secondary metabolism and plant protection from diseases makes it interesting for application in environmentally friendly agriculture. However, the literature data on the effect of Trichoderma inoculation on tomato fruit quality is scarce. Commercially used tomato cultivars were chosen in combination with indigenous Trichodrema species previously characterized on molecular and biochemical level, to investigate the effect of Trichoderma on photosynthetic characteristics and fruit quality of plants grown in organic system of production. Examined cultivars differed in the majority of examined parameters. Response of cultivar Gruzanski zlatni to Trichoderma application was more significant. As a consequence of increased epidermal flavonols and decreased chlorophyll, the nitrogen balance index in leaves has decreased, indicating a shift from primary to secondary metabolism. The quality of its fruit was altered in the sense of increased total flavonoids content, decreased starch, increased Bioaccumulation Index (BI) for Fe and Cr, and decreased BI for heavy metals Ni and Pb. Higher expression of swolenin gene in tomato roots of more responsive tomato cultivar indicates better root colonization, which correlates with observed positive effects of Trichodrema.


Asunto(s)
Trichoderma/patogenicidad , Flavonoides/metabolismo , Frutas/microbiología , Hypocreales/patogenicidad , Fotosíntesis/fisiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/microbiología
5.
Microorganisms ; 6(3)2018 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-30103563

RESUMEN

Trichoderma koningiopsis and T. gamsii belong to clade Viride of Trichoderma, the largest and most diverse group of this genus. They produce a wide range of bioactive secondary metabolites, including peptaibols with antibacterial, antifungal, and antiviral properties. The unusual amino acid residues of peptaibols, i.e., α-aminoisobutyric acid (Aib), isovaline (Iva), and the C-terminal 1,2-amino alcohol make them unique among peptides. In this study, the peptaibiomes of T. koningiopsis and T. gamsii were investigated by HPLC-ESI-MS. The examined strains appeared to produce 19-residue peptaibols, most of which are unknown from literature, but their amino acid sequences are similar to those of trikoningins, tricholongins, trichostrigocins, trichorzianins, and trichorzins. A new group of peptaibols detected in T. koningiopsis are described here under the name "Koningiopsin". Trikoningin KA V, the closest peptaibol compound to the peptaibols produced by these two strains, was selected for structural investigation by short MD simulation, which revealed that many residues show high preference for left handed helix formation. The bioactivity of the peptaibol mixtures produced by T. koningiopsis and T. gamsii was tested on agar plates against bacteria, yeasts, and filamentous fungi. The results revealed characteristic differences in bioactivities towards the different groups of target microorganisms, which can be explained with the differences in their cell wall structures.

6.
Environ Sci Pollut Res Int ; 24(4): 3375-3386, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27866360

RESUMEN

Influence of edaphic factors and metal content on diversity of Trichoderma species at 14 different soil sampling locations, on two depths, was examined. Forty-one Trichoderma isolates from 14 sampling sites were determined as nine species based on their internal transcribed spacer (ITS) sequences. Our results indicate that weakly alkaline soils are rich sources of Trichoderma strains. Also, higher contents of available K and P are connected with higher Trichoderma diversity. Increased metal content in soil was not inhibiting factor for Trichoderma species occurrence. Relationship between these factors was confirmed by locally weighted sequential smoothing (LOESS) nonparametric smoothing analysis. Trichoderma strain (Szeged Microbiology Collection (SZMC) 22669) from soil with concentrations of Cr and Ni above remediation values should be tested for its potential for bioremediation of these metals in polluted soils.


Asunto(s)
Metales/farmacología , Contaminantes del Suelo/farmacología , Suelo/química , Trichoderma/química , Microbiología del Suelo , Trichoderma/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...