Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36052991

RESUMEN

Activation of Toll signaling in Anopheles gambiae by silencing Cactus, a suppressor of this pathway, enhances local release of hemocyte-derived microvesicles (HdMv), promoting activation of the mosquito complement-like system, which eliminates Plasmodium ookinetes. We uncovered the mechanism of this immune enhancement. Cactus silencing triggers a Rel1-mediated differentiation of granulocytes to the megacyte lineage, a new subpopulation of giant cells, resulting in a dramatic increase in the proportion of circulating megacytes. Megacytes are very plastic cells that are massively recruited to the basal midgut surface in response to Plasmodium infection. We show that Toll signaling modulates hemocyte differentiation and that megacyte recruitment to the midgut greatly enhances mosquito immunity against Plasmodium.


Malaria causes hundreds of thousands of deaths each year. This devastating disease is caused by Plasmodium parasites, which are transmitted to people through female Anopheles gambiae mosquitos. Mosquitos become infected with Plasmodium when they ingest blood containing these malaria-causing parasites. However, Plasmodium must avoid the mosquito immune system to survive and spread. The mosquito immune system is made up of several types of immune cells, including cells known as granulocytes. Granulocytes can further develop into additional cell subtypes, such as megacytes and antimicrobial granulocytes, but it is not clear how these types of cells work to protect mosquitos against infections. In the mosquitos that transmit malaria, a cell signaling pathway called Toll helps control immune responses to disease-causing microbes, such as Plasmodium. When Toll signaling is strongly triggered in mosquitos, Plasmodium infection is eliminated because immune cell responses are enhanced ­ which results in lower levels of transmission to humans. But what is the underlying mechanism through which high levels of Toll signaling eradicate Plasmodium infection? To find out, Barletta et al. collected cell samples from A. gambiae mosquitos and analyzed what happened when Toll signaling was strongly activated. They observed a large increase in the proportion of megacytes in these mosquitos (from 2% to 80% of all granulocytes). Toll signaling also caused megacytes to become bigger, cluster together, and have higher plasticity ­ meaning they could adopt different shapes. Barletta et al. used microscopy to show that these megacytes were releasing large mitochondria-like structures and membrane vesicles , which may be the trigger activating the mosquito's immune system. In live mosquitos, megacytes move towards the area of the Plasmodium infection and release microvesicles. These microvesicles are known to activate a part of the the mosquito's immune system called the complement-like system, destroying the parasites and preventing mosquito infection and disease transmission. These findings show how strong Toll signaling triggers the mosquito immune system to eliminate Plasmodium infections. Understanding how the mosquito immune system tackles Plasmodium infection may help reveal ways to reduce or block transmission.


Asunto(s)
Anopheles , Malaria , Plasmodium , Animales , Hemocitos , Humanos , Plásticos/metabolismo
2.
J Med Virol ; 94(10): 4820-4829, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35705514

RESUMEN

The virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the global coronavirus disease-2019 (COVID-19) pandemic, spread rapidly around the world causing high morbidity and mortality. However, there are four known, endemic seasonal coronaviruses in humans (HCoVs), and whether antibodies for these HCoVs play a role in severity of COVID-19 disease has generated a lot of interest. Of these seasonal viruses NL63 is of particular interest as it uses the same cell entry receptor as SARS-CoV-2. We use functional, neutralizing assays to investigate cross-reactive antibodies and their relationship with COVID-19 severity. We analyzed the neutralization of SARS-CoV-2, NL63, HKU1, and 229E in 38 COVID-19 patients and 62 healthcare workers, and a further 182 samples to specifically study the relationship between SARS-CoV-2 and NL63. We found that although HCoV neutralization was very common there was little evidence that these antibodies neutralized SARS-CoV-2. Despite no evidence in cross-neutralization, levels of NL63 neutralizing antibodies become elevated after exposure to SARS-CoV-2 through infection or following vaccination.


Asunto(s)
COVID-19 , Coronavirus Humano NL63 , Anticuerpos Antivirales , Reacciones Cruzadas , Humanos , Pandemias , SARS-CoV-2 , Estaciones del Año , Glicoproteína de la Espiga del Coronavirus
3.
Front Immunol ; 13: 773982, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330908

RESUMEN

The rise of SARS-CoV-2 variants has made the pursuit to define correlates of protection more troublesome, despite the availability of the World Health Organisation (WHO) International Standard for anti-SARS-CoV-2 Immunoglobulin sera, a key reagent used to standardise laboratory findings into an international unitage. Using pseudotyped virus, we examine the capacity of convalescent sera, from a well-defined cohort of healthcare workers (HCW) and Patients infected during the first wave from a national critical care centre in the UK to neutralise B.1.1.298, variants of interest (VOI) B.1.617.1 (Kappa), and four VOCs, B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta), including the B.1.617.2 K417N, informally known as Delta Plus. We utilised the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin to report neutralisation antibody levels in International Units per mL. Our data demonstrate a significant reduction in the ability of first wave convalescent sera to neutralise the VOCs. Patients and HCWs with more severe COVID-19 were found to have higher antibody titres and to neutralise the VOCs more effectively than individuals with milder symptoms. Using an estimated threshold for 50% protection, 54 IU/mL, we found most asymptomatic and mild cases did not produce titres above this threshold.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/terapia , Humanos , Inmunización Pasiva , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Sueroterapia para COVID-19
4.
Science ; 369(6507): 1128-1132, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32855340

RESUMEN

Hemocytes limit the capacity of mosquitoes to transmit human pathogens. Here we profile the transcriptomes of 8506 hemocytes of Anopheles gambiae and Aedes aegypti mosquito vectors. Our data reveal the functional diversity of hemocytes, with different subtypes of granulocytes expressing distinct and evolutionarily conserved subsets of effector genes. A previously unidentified cell type in An. gambiae, which we term "megacyte," is defined by a specific transmembrane protein marker (TM7318) and high expression of lipopolysaccharide-induced tumor necrosis factor-α transcription factor 3 (LL3). Knockdown experiments indicate that LL3 mediates hemocyte differentiation during immune priming. We identify and validate two main hemocyte lineages and find evidence of proliferating granulocyte populations. This atlas of medically relevant invertebrate immune cells at single-cell resolution identifies cellular events that underpin mosquito immunity to malaria infection.


Asunto(s)
Aedes/inmunología , Anopheles/inmunología , Hemocitos/inmunología , Inmunidad Celular , Malaria/transmisión , Mosquitos Vectores/inmunología , Aedes/genética , Animales , Anopheles/genética , Femenino , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Granulocitos/inmunología , Hemocitos/metabolismo , Malaria/inmunología , Malaria/parasitología , Ratones , Mosquitos Vectores/genética , RNA-Seq , Análisis de la Célula Individual
5.
Methods Mol Biol ; 1979: 73-85, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31028633

RESUMEN

Drop-Seq is a low-cost, high-throughput platform to profile thousands of cells by encapsualting them into individual droplets. Uniquely barcoded mRNA capture microparticles and cells are coconfined through a microfluidic device within the droplets where they undergo cell lysis and RNA hybridiztion. After breaking the droplets and pooling the hybridized particles, reverse transcription, PCR, and sequencing in single reactions allow to generate data from thousands of single-cell transcriptomes while maintaining information on the cellular origin of each transcript.


Asunto(s)
Perfilación de la Expresión Génica/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Dispositivos Laboratorio en un Chip , Análisis de la Célula Individual/instrumentación , Animales , Diseño de Equipo , Perfilación de la Expresión Génica/economía , Perfilación de la Expresión Génica/métodos , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Dispositivos Laboratorio en un Chip/economía , Análisis de la Célula Individual/economía , Análisis de la Célula Individual/métodos , Transcriptoma
6.
Methods Mol Biol ; 1979: 111-132, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31028635

RESUMEN

Seq-Well is a low-cost picowell platform that can be used to simultaneously profile the transcriptomes of thousands of cells from diverse, low input clinical samples. In Seq-Well, uniquely barcoded mRNA capture beads and cells are co-confined in picowells that are sealed using a semipermeable membrane, enabling efficient cell lysis and mRNA capture. The beads are subsequently removed and processed in parallel for sequencing, with each transcript's cell of origin determined via the unique barcodes. Due to its simplicity and portability, Seq-Well can be performed almost anywhere.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Mensajero/genética , Análisis de la Célula Individual/métodos , Animales , Diseño de Equipo , Perfilación de la Expresión Génica/economía , Perfilación de la Expresión Génica/instrumentación , Perfilación de la Expresión Génica/métodos , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Humanos , Membranas Artificiales , Reacción en Cadena de la Polimerasa/economía , Reacción en Cadena de la Polimerasa/instrumentación , Reacción en Cadena de la Polimerasa/métodos , Transcripción Reversa , Análisis de Secuencia de ARN/economía , Análisis de Secuencia de ARN/instrumentación , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/economía , Análisis de la Célula Individual/instrumentación
7.
J Bacteriol ; 194(6): 1299-306, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22228733

RESUMEN

Leptospira interrogans is the primary causative agent of the most widespread zoonotic disease, leptospirosis. An in-depth structural characterization of L. interrogans is needed to understand its biology and pathogenesis. In this study, cryo-electron tomography (cryo-ET) was used to compare pathogenic and saprophytic species and examine the unique morphological features of this group of bacteria. Specifically, our study revealed a structural difference between the cell envelopes of L. interrogans and Leptospira biflexa involving variations in the lipopolysaccharide (LPS) layer. Through cryo-ET and subvolume averaging, we determined the first three-dimensional (3-D) structure of the flagellar motor of leptospira, with novel features in the flagellar C ring, export apparatus, and stator. Together with direct visualization of chemoreceptor arrays, DNA packing, periplasmic filaments, spherical cytoplasmic bodies, and a unique "cap" at the cell end, this report provides structural insights into these fascinating Leptospira species.


Asunto(s)
Leptospira/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Flagelos/ultraestructura , Imagenología Tridimensional , Leptospira/patogenicidad , Sustancias Macromoleculares/ultraestructura
8.
J Bacteriol ; 193(10): 2652-6, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21441520

RESUMEN

Green fluorescent protein (GFP) fusions, immunofluorescence microscopy, and cryo-electron tomography revealed that the chemoreceptors of the Lyme disease spirochete Borrelia burgdorferi form long, thin arrays near both cell poles. These arrays are in close proximity to the flagellar motors. This information provides a basis for further understanding motility, chemotaxis, and protein localization in spirochetes.


Asunto(s)
Proteínas Bacterianas/análisis , Borrelia burgdorferi/química , Proteínas Motoras Moleculares/análisis , Tomografía con Microscopio Electrónico , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...