Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Antiviral Res ; 226: 105878, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582134

RESUMEN

Flaviviruses can cause severe illness in humans. Effective and safe vaccines are available for some species; however, for many flaviviruses disease prevention or specific treatments remain unavailable. The viral replication cycle depends on the proteolytic activity of the NS2B-NS3 protease, which releases functional viral proteins from a non-functional polyprotein precursor, rendering the protease a promising drug target. In this study, we characterised recombinant NS2B-NS3 proteases from ten flaviviruses including three unreported proteases from the Usutu, Kyasanur forest disease and Powassan viruses. All protease constructs comprise a covalent Gly4-Ser-Gly4 linker connecting the NS3 serine protease domain with its cofactor NS2B. We conducted a comprehensive cleavage site analysis revealing areas of high conversion. While all proteases were active in enzymatic assays, we noted a 1000-fold difference in catalytic efficiency across proteases from different flaviviruses. Two bicyclic peptide inhibitors displayed anti-pan-flaviviral protease activity with inhibition constants ranging from 10 to 1000 nM.


Asunto(s)
Antivirales , Flavivirus , Serina Endopeptidasas , Proteínas no Estructurales Virales , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Flavivirus/efectos de los fármacos , Flavivirus/enzimología , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/química , Antivirales/farmacología , Antivirales/química , Humanos , ARN Helicasas/metabolismo , ARN Helicasas/química , ARN Helicasas/genética , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteasas Virales , Nucleósido-Trifosfatasa , ARN Helicasas DEAD-box
3.
Nat Commun ; 15(1): 3537, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670939

RESUMEN

Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) from Streptococcus pneumoniae, the main cause for bacterial pneumonia. Liberation of PLY during infection leads to compromised immune system and cytolytic cell death. Here, we report discovery, development, and validation of targeted small molecule inhibitors of PLY (pore-blockers, PB). PB-1 is a virtual screening hit inhibiting PLY-mediated hemolysis. Structural optimization provides PB-2 with improved efficacy. Cryo-electron tomography reveals that PB-2 blocks PLY-binding to cholesterol-containing membranes and subsequent pore formation. Scaffold-hopping delivers PB-3 with superior chemical stability and solubility. PB-3, formed in a protein-templated reaction, binds to Cys428 adjacent to the cholesterol recognition domain of PLY with a KD of 256 nM and a residence time of 2000 s. It acts as anti-virulence factor preventing human lung epithelial cells from PLY-mediated cytolysis and cell death during infection with Streptococcus pneumoniae and is active against the homologous Cys-containing CDC perfringolysin (PFO) as well.


Asunto(s)
Proteínas Bacterianas , Toxinas Bacterianas , Proteínas Hemolisinas , Hemólisis , Streptococcus pneumoniae , Estreptolisinas , Estreptolisinas/metabolismo , Estreptolisinas/química , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/antagonistas & inhibidores , Streptococcus pneumoniae/efectos de los fármacos , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/antagonistas & inhibidores , Hemólisis/efectos de los fármacos , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Células A549 , Colesterol/metabolismo , Microscopía por Crioelectrón , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Factores de Virulencia/metabolismo
4.
Chemistry ; 30(17): e202303940, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38246870

RESUMEN

Protein-templated fragment ligation was established as a method for the rapid identification of high affinity ligands, and multicomponent reactions (MCR) such as the Ugi four-component reaction (Ugi 4CR) have been efficient in the synthesis of drug candidates. Thus, the combination of both strategies should provide a powerful approach to drug discovery. Here, we investigate protein-templated Ugi 4CR quantitatively using a fluorescence-based enzyme assay, HPLC-QTOF mass spectrometry (MS), and native protein MS with SARS-CoV-2 main protease as template. Ugi reactions were analyzed in aqueous buffer at varying pH and fragment concentration. Potent inhibitors of the protease were formed in presence of the protein via Ugi 4CR together with Ugi three-component reaction (Ugi 3CR) products. Binding of inhibitors to the protease was confirmed by native MS and resulted in the dimerization of the protein target. Formation of Ugi products was, however, more efficient in the non-templated reaction, apparently due to interactions of the protein with the isocyanide and imine fragments. Consequently, in-situ ligation screening of Ugi 4CR products was identified as a superior approach to the discovery of SARS-CoV-2 protease inhibitors.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Proteasas 3C de Coronavirus , Cianuros/química , Endopeptidasas , Inhibidores de Proteasas
5.
Chemistry ; 30(13): e202302758, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38010268

RESUMEN

The interactions of glycosaminoglycans (GAG) with proteins of the extracellular matrix govern and regulate complex physiological functions including cellular growth, immune response, and inflammation. Repetitive presentation of GAG binding motifs, as found in native proteoglycans, might enhance GAG-protein binding through multivalent interactions. Here, we report the chemical synthesis of dendritic GAG oligomers constructed of nonasulfated hyaluronan tetrasaccharides for investigating the binding of the protein chemokine interleukin 8 (IL-8) to artificial, well-defined proteoglycan architectures. Binding of mutant monomeric and native dimerizable IL-8 was investigated by NMR spectroscopy and isothermal titration calorimetry. Dendritic oligomerization of GAG increased the binding affinity of both monomeric and dimeric IL-8. Monomeric IL-8 bound to monomeric and dimeric GAG with KD values of 7.3 and 0.108 µM, respectively. The effect was less pronounced for dimerizable wild-type IL-8, for which GAG dimerization improved the affinity from 34 to 5 nM. Binding of dimeric IL-8 to oligomeric GAG was limited by steric crowding effects, strongly reducing the affinity of subsequent binding events. In conclusion, the strongest effect of GAG oligomerization was the amplified binding of IL-8 monomers, which might concentrate monomeric protein in the extracellular matrix and thus promote protein dimerization under physiological conditions.


Asunto(s)
Glicosaminoglicanos , Interleucina-8 , Glicosaminoglicanos/química , Dimerización , Interleucina-8/química , Interleucina-8/metabolismo , Proteoglicanos , Unión Proteica
6.
Angew Chem Int Ed Engl ; 63(10): e202318615, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38126926

RESUMEN

Cell-penetrating peptides (CPPs) play a significant role in the delivery of cargos into human cells. We report the first CPPs based on peptide-bismuth bicycles, which can be readily obtained from commercially available peptide precursors, making them accessible for a wide range of applications. These CPPs enter human cells as demonstrated by live-cell confocal microscopy using fluorescently labelled peptides. We report efficient sequences that demonstrate increased cellular uptake compared to conventional CPPs like the TAT peptide (derived from the transactivating transcriptional activator of human immunodeficiency virus 1) or octaarginine (R8 ), despite requiring only three positive charges. Bicyclization triggered by the presence of bismuth(III) increases cellular uptake by more than one order of magnitude. Through the analysis of cell lysates using inductive coupled plasma mass spectrometry (ICP-MS), we have introduced an alternative approach to examine the cellular uptake of CPPs. This has allowed us to confirm the presence of bismuth in cells after exposure to our CPPs. Mechanistic studies indicated an energy-dependent endocytic cellular uptake sensitive to inhibition by rottlerin, most likely involving macropinocytosis.


Asunto(s)
Péptidos de Penetración Celular , Humanos , Péptidos de Penetración Celular/química , Endocitosis/fisiología , Bismuto , Ciclismo , Pinocitosis
7.
Methods Mol Biol ; 2743: 239-270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38147220

RESUMEN

Phosphotyrosine biomimetics are starting points for potent inhibitors of protein tyrosine phosphatases (PTPs) and, thus, crucial for drug development. Their identification, however, has been heavily driven by rational design, limiting the discovery of diverse, novel, and improved mimetics. In this chapter, we describe two screening approaches utilizing fragment ligation methods: one to identify new mimetics and the other to optimize existing mimetics into more potent and selective inhibitors.


Asunto(s)
Biomimética , Desarrollo de Medicamentos , Fosfotirosina , Proteínas Tirosina Fosfatasas
8.
J Med Chem ; 66(17): 11761-11791, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37585683

RESUMEN

Carbapenem resistance mediated by metallo-ß-lactamases (MBL) such as New Delhi metallo-ß-lactamase-1 (NDM-1) has become a major factor threatening the efficacy of essential ß-lactam antibiotics. Starting from hit fragment dipicolinic acid (DPA), 8-hydroxy- and 8-sulfonamido-quinoline-2-carboxylic acids were developed as inhibitors of NDM-1 with highly improved inhibitory activity and binding affinity. The most active compounds formed reversibly inactive ternary protein-inhibitor complexes with two zinc ions as proven by native protein mass spectrometry and bio-layer interferometry. Modification of the NDM-1 structure with remarkable entropic gain was shown by isothermal titration calorimetry and NMR spectroscopy of isotopically labeled protein. The best compounds were potent inhibitors of NDM-1 and other representative MBL with no or little inhibition of human zinc-binding enzymes. These inhibitors significantly reduced the minimum inhibitory concentrations (MIC) of meropenem for multidrug-resistant bacteria recombinantly expressing blaNDM-1 as well as for several multidrug-resistant clinical strains at concentrations non-toxic to human cells.


Asunto(s)
Carbapenémicos , Quinolinas , Humanos , Carbapenémicos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Cinética , beta-Lactamasas/metabolismo , Pruebas de Sensibilidad Microbiana , Bacterias/metabolismo , Termodinámica , Zinc/química , Ácidos Carboxílicos , Inhibidores de beta-Lactamasas/química
9.
Biomaterials ; 297: 122105, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37031548

RESUMEN

The WNT signaling pathway is a central regulator of bone development and regeneration. Functional alterations of WNT ligands and inhibitors are associated with a variety of bone diseases that affect bone fragility and result in a high medical and socioeconomic burden. Hence, this cellular pathway has emerged as a novel target for bone-protective therapies, e.g. in osteoporosis. Here, we investigated glycosaminoglycan (GAG) recognition by Dickkopf-1 (DKK1), a potent endogenous WNT inhibitor, and the underlying functional implications in order to develop WNT signaling regulators. In a multidisciplinary approach we applied in silico structure-based de novo design strategies and molecular dynamics simulations combined with synthetic chemistry and surface plasmon resonance spectroscopy to Rationally Engineer oligomeric Glycosaminoglycan derivatives (REGAG) with improved neutralizing properties for DKK1. In vitro and in vivo assays show that the GAG modification to obtain REGAG translated into increased WNT pathway activity and improved bone regeneration in a mouse calvaria defect model with critical size bone lesions. Importantly, the developed REGAG outperformed polymeric high-sulfated hyaluronan (sHA3) in enhancing bone healing up to 50% due to their improved DKK1 binding properties. Thus, rationally engineered GAG variants may represent an innovative strategy to develop novel therapeutic approaches for regenerative medicine.


Asunto(s)
Enfermedades Óseas , Regeneración Ósea , Glicosaminoglicanos , Péptidos y Proteínas de Señalización Intercelular , Animales , Ratones , Huesos/metabolismo , Glicosaminoglicanos/metabolismo , Vía de Señalización Wnt
10.
ChemMedChem ; 18(9): e202200635, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36812048

RESUMEN

SARS coronavirus main proteases (3CL proteases) have been validated as pharmacological targets for the treatment of coronavirus infections. Current inhibitors of SARS main protease, including the clinically admitted drug nirmatrelvir are peptidomimetics with the downsides of this class of drugs including limited oral bioavailability, cellular permeability, and rapid metabolic degradation. Here, we investigate covalent fragment inhibitors of SARS Mpro as potential alternatives to peptidomimetic inhibitors in use today. Starting from inhibitors acylating the enzyme's active site, a set of reactive fragments was synthesized, and the inhibitory potency was correlated with the chemical stability of the inhibitors and the kinetic stability of the covalent enzyme-inhibitor complex. We found that all tested acylating carboxylates, several of them published prominently, were hydrolyzed in assay buffer and the inhibitory acyl-enzyme complexes were rapidly degraded leading to the irreversible inactivation of these drugs. Acylating carbonates were found to be more stable than acylating carboxylates, however, were inactive in infected cells. Finally, reversibly covalent fragments were investigated as chemically stable SARS CoV-2 inhibitors. Best was a pyridine-aldehyde fragment with an IC50 of 1.8 µM at a molecular weight of 211 g/mol, showing that pyridine fragments indeed are able to block the active site of SARS-CoV-2 main protease.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Piridinas/farmacología , Antivirales/farmacología , Antivirales/química
12.
Sci Rep ; 12(1): 13326, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922533

RESUMEN

Transglutaminases (TGs) catalyze the covalent crosslinking of proteins via isopeptide bonds. The most prominent isoform, TG2, is associated with physiological processes such as extracellular matrix (ECM) stabilization and plays a crucial role in the pathogenesis of e.g. fibrotic diseases, cancer and celiac disease. Therefore, TG2 represents a pharmacological target of increasing relevance. The glycosaminoglycans (GAG) heparin (HE) and heparan sulfate (HS) constitute high-affinity interaction partners of TG2 in the ECM. Chemically modified GAG are promising molecules for pharmacological applications as their composition and chemical functionalization may be used to tackle the function of ECM molecular systems, which has been recently described for hyaluronan (HA) and chondroitin sulfate (CS). Herein, we investigate the recognition of GAG derivatives by TG2 using an enzyme-crosslinking activity assay in combination with in silico molecular modeling and docking techniques. The study reveals that GAG represent potent inhibitors of TG2 crosslinking activity and offers atom-detailed mechanistic insights.


Asunto(s)
Glicosaminoglicanos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Transglutaminasas/metabolismo
13.
Chemistry ; 28(57): e202201282, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-35781901

RESUMEN

Discovery of protein-binding fragments for precisely defined binding sites is an unmet challenge to date. Herein, formylglycine is investigated as a molecular probe for the sensitive detection of fragments binding to a spatially defined protein site . Formylglycine peptide 3 was derived from a phosphotyrosine-containing peptide substrate of protein tyrosine phosphatase PTP1B by replacing the phosphorylated amino acid with the reactive electrophile. Fragment ligation with formylglycine occurred in situ in aqueous physiological buffer. Structures and kinetics were validated by NMR spectroscopy. Screening and hit validation revealed fluorinated and non-fluorinated hit fragments being able to replace the native phosphotyrosine residue. The formylglycine probe identified low-affinity fragments with high spatial resolution as substantiated by molecular modelling. The best fragment hit, 4-amino-phenyl-acetic acid, was converted into a cellularly active, nanomolar inhibitor of the protein tyrosine phosphatase SHP2.


Asunto(s)
Aminoácidos , Péptidos , Acetatos , Sitios de Unión , Glicina/análogos & derivados , Sondas Moleculares , Péptidos/química , Fosfotirosina/química
14.
Angew Chem Int Ed Engl ; 61(25): e202203579, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35303375

RESUMEN

Phosphotyrosine residues are essential functional switches in health and disease. Thus, phosphotyrosine biomimetics are crucial for the development of chemical tools and drug molecules. We report here the discovery and investigation of pentafluorophosphato amino acids as novel phosphotyrosine biomimetics. A mild acidic pentafluorination protocol was developed and two PF5 -amino acids were prepared and employed in peptide synthesis. Their structures, reactivities, and fluorine-specific interactions were studied by NMR and IR spectroscopy, X-ray diffraction, and in bioactivity assays. The mono-anionic PF5 motif displayed an amphiphilic character binding to hydrophobic surfaces, to water molecules, and to protein-binding sites, exploiting charge and H-F-bonding interactions. The novel motifs bind 25- to 30-fold stronger to the phosphotyrosine binding site of the protein tyrosine phosphatase PTP1B than the best current biomimetics, as rationalized by computational methods, including molecular dynamics simulations.


Asunto(s)
Flúor , Fenilalanina , Sitios de Unión , Biomimética , Inhibidores Enzimáticos/química , Fluoruros , Modelos Moleculares , Fosfotirosina/química
15.
Angew Chem Int Ed Engl ; 61(4): e202113857, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34825756

RESUMEN

Constrained peptides are promising next-generation therapeutics. We report here a fundamentally new strategy for the facile generation of bicyclic peptides using linear precursor peptides with three cysteine residues and a non-toxic trivalent bismuth(III) salt. Peptide-bismuth bicycles form instantaneously at physiological pH, are stable in aqueous solution for many weeks, and much more resistant to proteolysis than their linear precursors. The strategy allows the in situ generation of bicyclic ligands for biochemical screening assays. We demonstrate this for two screening campaigns targeting the proteases from Zika and West Nile viruses, revealing a new lead compound that displayed inhibition constants of 23 and 150 nM, respectively. Bicyclic peptides are up to 130 times more active and 19 times more proteolytically stable than their linear analogs without bismuth.


Asunto(s)
Bismuto/farmacología , Péptido Hidrolasas/metabolismo , Péptidos Cíclicos/farmacología , Inhibidores de Proteasas/farmacología , Bismuto/química , Relación Dosis-Respuesta a Droga , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Conformación Proteica , Virus del Nilo Occidental/enzimología , Virus Zika/enzimología
16.
Chembiochem ; 23(3): e202100552, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34851004

RESUMEN

Cytokines such as interleukin-8 activate the immune system during infection and interact with sulfated glycosaminoglycans with specific sulfation patterns. In some cases, these interactions are mediated by metal ion binding which can be used to tune surface-based glycan-protein interactions. We evaluated the effect of both hyaluronan sulfation degree and Fe3+ on interleukin-8 binding by electrochemical impedance spectroscopy and surface characterizations. Our results show that sulfation degree and metal ion interactions have a synergistic effect in tuning the electrochemical response of the glycated surfaces to the cytokine.


Asunto(s)
Compuestos Férricos/química , Ácido Hialurónico/metabolismo , Interleucina-8/química , Polisacáridos/química , Técnicas Electroquímicas , Compuestos Férricos/inmunología , Humanos , Ácido Hialurónico/química , Interleucina-8/inmunología , Modelos Moleculares , Estructura Molecular , Polisacáridos/inmunología
17.
ACS Med Chem Lett ; 12(12): 1955-1961, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34917260

RESUMEN

Viral proteases have been established as drug targets in several viral diseases including human immunodeficiency virus and hepatitis C virus infections due to the essential role of these enzymes in virus replication. In contrast, no antiviral therapy is available to date against flaviviral infections including those by Zika virus (ZIKV), West Nile virus (WNV), or dengue virus (DENV). Numerous potent inhibitors of flaviviral proteases have been reported; however, a huge gap remains between the in vitro and intracellular activities, possibly due to low cellular uptake of the charged compounds. Here, we present an alternative, nanoparticular approach to antivirals. Conjugation of peptidomimetic inhibitors and cell-penetrating peptides to dextran yielded chemically defined nanoparticles that were potent inhibitors of flaviviral proteases. Peptide-dextran conjugates inhibited viral replication and infection in cells at nontoxic, low micromolar or even nanomolar concentrations. Thus, nanoparticular antivirals might be alternative starting points for the development of broad-spectrum antiflaviviral drugs.

18.
Biol Chem ; 402(11): 1427-1440, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34472763

RESUMEN

Glycosaminoglycans (GAGs) are essential functional components of the extracellular matrix (ECM). Artificial GAGs like sulfated hyaluronan (sHA) exhibit pro-osteogenic properties and boost healing processes. Hence, they are of high interest for supporting bone regeneration and wound healing. Although sulfated GAGs (sGAGs) appear intracellularly, the knowledge about intracellular effects and putative interaction partners is scarce. Here we used an affinity-purification mass spectrometry-based (AP-MS) approach to identify novel and particularly intracellular sGAG-interacting proteins in human bone marrow stromal cells (hBMSC). Overall, 477 proteins were found interacting with at least one of four distinct sGAGs. Enrichment analysis for protein localization showed that mainly intracellular and cell-associated interacting proteins were identified. The interaction of sGAG with α2-macroglobulin receptor-associated protein (LRPAP1), exportin-1 (XPO1), and serine protease HTRA1 (HTRA1) was confirmed in reverse assays. Consecutive pathway and cluster analysis led to the identification of biological processes, namely processes involving binding and processing of nucleic acids, LRP1-dependent endocytosis, and exosome formation. Respecting the preferentially intracellular localization of sGAG in vesicle-like structures, also the interaction data indicate sGAG-specific modulation of vesicle-based transport processes. By identifying many sGAG-specific interacting proteins, our data provide a resource for upcoming studies aimed at molecular mechanisms and understanding of sGAG cellular effects.


Asunto(s)
Glicosaminoglicanos/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Carioferinas/metabolismo , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Células Cultivadas , Cromatografía Liquida , Glicosaminoglicanos/química , Serina Peptidasa A1 que Requiere Temperaturas Altas/química , Serina Peptidasa A1 que Requiere Temperaturas Altas/aislamiento & purificación , Humanos , Carioferinas/química , Carioferinas/aislamiento & purificación , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/química , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/aislamiento & purificación , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/aislamiento & purificación , Espectrometría de Masas en Tándem , Proteína Exportina 1
19.
Biol Chem ; 402(11): 1375-1384, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34291624

RESUMEN

High amounts of glycosaminoglycans (GAG) such as hyaluronan (HA) occur in connective tissues. There is nowadays increasing evidence that a "sulfation code" exists which mediates numerous GAG functions. High molecular weight and inhomogeneity of GAG, however, aggravated detailed studies. Thus, synthetic oligosaccharides were urgently required. We will review here chemoenzymatic and analytic strategies to provide defined sulfated and anomerically modified GAG oligosaccharides of the HA type. Representative studies of protein/GAG interactions by (bio)chemical and biophysical methods are reported yielding novel insights into GAG-protein binding. Finally, the biological conclusions and in vivo applications of defined sulfated GAG oligosaccharides will be discussed.


Asunto(s)
Glicosaminoglicanos/metabolismo , Ácido Hialurónico/metabolismo , Oligosacáridos/metabolismo , Glicosaminoglicanos/química , Ácido Hialurónico/química , Estructura Molecular , Oligosacáridos/síntesis química , Oligosacáridos/química
20.
Biol Chem ; 402(11): 1441-1452, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34280958

RESUMEN

Angiogenesis is an important physiological process playing a crucial role in wound healing and cancer progression. Vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) are key players in angiogenesis. Based on previous findings regarding the modulation of VEGF activity by glycosaminoglycans (GAG), here we explore the interaction of hyaluronan (HA)-based GAG with PDGF and its receptor PDGFR-ß by applying molecular modeling and dynamics simulations in combination with surface plasmon resonance (SPR). Computational analysis on the interaction of oligo-hyaluronan derivatives with different sulfation pattern and functionalization shows that these GAG interact with PDGF in relevant regions for receptor recognition, and that high sulfation as well as modification with the TAMRA group convey stronger binding. On the other hand, the studied oligo-hyaluronan derivatives are predicted to scarcely recognize PDGFR-ß. SPR results are in line with the computational predictions regarding the binding pattern of HA tetrasaccharide (HA4) derivatives to PDGF and PDGFR-ß. Furthermore, our experimental results also show that the complexation of PDGF to PDGFR-ß can be modulated by HA4 derivatives. The results found open the path for considering HA4 derivatives as potential candidates to be exploited for modulation of the PDGF/PDGFR-ß signaling system in angiogenesis and related disease conditions.


Asunto(s)
Ácido Hialurónico/química , Factor de Crecimiento Derivado de Plaquetas/química , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/química , Conformación de Carbohidratos , Humanos , Modelos Moleculares , Proteínas Recombinantes/química , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA