Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 186(22): 4803-4817.e13, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37683634

RESUMEN

Patescibacteria, also known as the candidate phyla radiation (CPR), are a diverse group of bacteria that constitute a disproportionately large fraction of microbial dark matter. Its few cultivated members, belonging mostly to Saccharibacteria, grow as epibionts on host Actinobacteria. Due to a lack of suitable tools, the genetic basis of this lifestyle and other unique features of Patescibacteira remain unexplored. Here, we show that Saccharibacteria exhibit natural competence, and we exploit this property for their genetic manipulation. Imaging of fluorescent protein-labeled Saccharibacteria provides high spatiotemporal resolution of phenomena accompanying epibiotic growth, and a transposon-insertion sequencing (Tn-seq) genome-wide screen reveals the contribution of enigmatic Saccharibacterial genes to growth on their hosts. Finally, we leverage metagenomic data to provide cutting-edge protein structure-based bioinformatic resources that support the strain Southlakia epibionticum and its corresponding host, Actinomyces israelii, as a model system for unlocking the molecular underpinnings of the epibiotic lifestyle.


Asunto(s)
Bacterias , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Metagenoma , Metagenómica , Filogenia , Actinobacteria/fisiología
2.
Cell Host Microbe ; 31(8): 1359-1370.e7, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37453420

RESUMEN

Glutathione (GSH) is an abundant metabolite within eukaryotic cells that can act as a signal, a nutrient source, or serve in a redox capacity for intracellular bacterial pathogens. For Francisella, GSH is thought to be a critical in vivo source of cysteine; however, the cellular pathways permitting GSH utilization by Francisella differ between strains and have remained poorly understood. Using genetic screening, we discovered a unique pathway for GSH utilization in Francisella. Whereas prior work suggested GSH catabolism initiates in the periplasm, the pathway we define consists of a major facilitator superfamily (MFS) member that transports intact GSH and a previously unrecognized bacterial cytoplasmic enzyme that catalyzes the first step of GSH degradation. Interestingly, we find that the transporter gene for this pathway is pseudogenized in pathogenic Francisella, explaining phenotypic discrepancies in GSH utilization among Francisella spp. and revealing a critical role for GSH in the environmental niche of these bacteria.


Asunto(s)
Francisella tularensis , Francisella , Glutatión/metabolismo , Francisella/genética , Francisella/metabolismo , Francisella tularensis/genética , Francisella tularensis/crecimiento & desarrollo , Francisella tularensis/metabolismo , Elementos Transponibles de ADN , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Filogenia , Macrófagos/parasitología , Animales , Ratones , Tularemia/microbiología
3.
bioRxiv ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37205512

RESUMEN

The study of bacteria has yielded fundamental insights into cellular biology and physiology, biotechnological advances and many therapeutics. Yet due to a lack of suitable tools, the significant portion of bacterial diversity held within the candidate phyla radiation (CPR) remains inaccessible to such pursuits. Here we show that CPR bacteria belonging to the phylum Saccharibacteria exhibit natural competence. We exploit this property to develop methods for their genetic manipulation, including the insertion of heterologous sequences and the construction of targeted gene deletions. Imaging of fluorescent protein-labeled Saccharibacteria provides high spatiotemporal resolution of phenomena accompanying epibiotic growth and a transposon insertion sequencing genome-wide screen reveals the contribution of enigmatic Saccharibacterial genes to growth on their Actinobacteria hosts. Finally, we leverage metagenomic data to provide cutting-edge protein structure-based bioinformatic resources that support the strain Southlakia epibionticum and its corresponding host, Actinomyces israelii , as a model system for unlocking the molecular underpinnings of the epibiotic lifestyle.

4.
mBio ; 13(5): e0142422, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36121157

RESUMEN

Within-host evolution produces genetic diversity in bacterial strains that cause chronic human infections. However, the lack of facile methods to measure bacterial allelic variation in clinical samples has limited understanding of intrastrain diversity's effects on disease. Here, we report a new method termed genome capture sequencing (GenCap-Seq) in which users inexpensively make hybridization probes from genomic DNA or PCR amplicons to selectively enrich and sequence targeted bacterial DNA from clinical samples containing abundant human or nontarget bacterial DNA. GenCap-Seq enables accurate measurement of allele frequencies over targeted regions and is scalable from specific genes to entire genomes, including the strain-specific accessory genome. The method is effective with samples in which target DNA is rare and inhibitory and DNA-degrading substances are abundant, including human sputum and feces. In proof-of-principle experiments, we used GenCap-Seq to investigate the responses of diversified Pseudomonas aeruginosa populations chronically infecting the lungs of people with cystic fibrosis to in vivo antibiotic exposure, and we found that treatment consistently reduced intrastrain genomic diversity. In addition, analysis of gene-level allele frequency changes suggested that some genes without conventional resistance functions may be important for bacterial fitness during in vivo antibiotic exposure. GenCap-Seq's ability to scalably enrich targeted bacterial DNA from complex samples will enable studies on the effects of intrastrain and intraspecies diversity in human infectious disease. IMPORTANCE Genetic diversity evolves in bacterial strains during human infections and could affect disease manifestations and treatment resistance. However, the extent of diversity present in vivo and its changes over time are difficult to measure by conventional methods. We developed a novel approach, GenCap-Seq, to enrich microbial DNA from complex human samples like sputum and feces for genome-wide measurements of bacterial allelic diversity. The approach is inexpensive, scalable to encompass entire targeted genomes, and works in the presence of abundant untargeted nucleic acids and inhibiting substances. We used GenCap-Seq to investigate in vivo responses of diversified bacterial strains to antibiotic treatment. This method will enable new ideas about the effects of intrastrain diversity on human infections to be tested.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , ADN Bacteriano/genética , Pseudomonas aeruginosa/genética , Fibrosis Quística/microbiología , Genoma Bacteriano , Análisis de Secuencia de ADN , Antibacterianos/farmacología , Variación Genética , Infecciones por Pseudomonas/microbiología
5.
Nat Microbiol ; 7(6): 844-855, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650286

RESUMEN

DNA-protein interactions are central to fundamental cellular processes, yet widely implemented technologies for measuring these interactions on a genome scale in bacteria are laborious and capture only a snapshot of binding events. We devised a facile method for mapping DNA-protein interaction sites in vivo using the double-stranded DNA-specific cytosine deaminase toxin DddA. In 3D-seq (DddA-sequencing), strains containing DddA fused to a DNA-binding protein of interest accumulate characteristic mutations in DNA sequence adjacent to sites occupied by the DNA-bound fusion protein. High-depth sequencing enables detection of sites of increased mutation frequency in these strains, yielding genome-wide maps of DNA-protein interaction sites. We validated 3D-seq for four transcription regulators in two bacterial species, Pseudomonas aeruginosa and Escherichia coli. We show that 3D-seq offers ease of implementation, the ability to record binding event signatures over time and the capacity for single-cell resolution.


Asunto(s)
Citosina Desaminasa , Genoma , Bacterias/metabolismo , ADN/metabolismo , Mapeo de Interacción de Proteínas
6.
Elife ; 112022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35175195

RESUMEN

Bacterial survival is fraught with antagonism, including that deriving from viruses and competing bacterial cells. It is now appreciated that bacteria mount complex antiviral responses; however, whether a coordinated defense against bacterial threats is undertaken is not well understood. Previously, we showed that Pseudomonas aeruginosa possess a danger-sensing pathway that is a critical fitness determinant during competition against other bacteria. Here, we conducted genome-wide screens in P. aeruginosa that reveal three conserved and widespread interbacterial antagonism resistance clusters (arc1-3). We find that although arc1-3 are coordinately activated by the Gac/Rsm danger-sensing system, they function independently and provide idiosyncratic defense capabilities, distinguishing them from general stress response pathways. Our findings demonstrate that Arc3 family proteins provide specific protection against phospholipase toxins by preventing the accumulation of lysophospholipids in a manner distinct from previously characterized membrane repair systems. These findings liken the response of P. aeruginosa to bacterial threats to that of eukaryotic innate immunity, wherein threat detection leads to the activation of specialized defense systems.


Asunto(s)
Bacterias , Pseudomonas aeruginosa , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Eucariontes/metabolismo , Inmunidad Innata , Pseudomonas aeruginosa/metabolismo
7.
mBio ; 12(6): e0314821, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903059

RESUMEN

Drugs called CFTR modulators improve the physiologic defect underlying cystic fibrosis (CF) and alleviate many disease manifestations. However, studies to date indicate that chronic lung infections that are responsible for most disease-related mortality generally persist. Here, we investigated whether combining the CFTR modulator ivacaftor with an intensive 3.5-month antibiotic course could clear chronic Pseudomonas aeruginosa or Staphylococcus aureus lung infections in subjects with R117H-CFTR, who are highly ivacaftor-responsive. Ivacaftor alone improved CFTR activity, and lung function and inflammation within 48 h, and reduced P. aeruginosa and S. aureus pathogen density by ∼10-fold within a week. Antibiotics produced an additional ∼10-fold reduction in pathogen density, but this reduction was transient in subjects who remained infected. Only 1/5 P. aeruginosa-infected and 1/7 S. aureus-infected subjects became persistently culture-negative after the combined treatment. Subjects appearing to clear infection did not have particularly favorable baseline lung function or inflammation, pathogen density or antibiotic susceptibility, or bronchiectasis scores on CT scans, but they did have remarkably low sweat chloride values before and after ivacaftor. All persistently P. aeruginosa-positive subjects remained infected by their pretreatment strain, whereas subjects persistently S. aureus-positive frequently lost and gained strains. This work suggests chronic CF infections may resist eradication despite marked and rapid modulator-induced improvements in lung infection and inflammation parameters and aggressive antibiotic treatment. IMPORTANCE Recent work shows that people with CF and chronic lung infections generally remain persistently infected after treatment with drugs that target the CF physiological defect (called CFTR modulators). However, changes produced by modulators could increase antibiotic efficacy. We tested the approach of combining modulators and intensive antibiotics in rapid succession and found that while few subjects cleared their infections, combined treatment appeared most effective in subjects with the highest CFTR activity. These findings highlight challenges that remain to improve the health of people with CF.


Asunto(s)
Aminofenoles/administración & dosificación , Antibacterianos/administración & dosificación , Fibrosis Quística/tratamiento farmacológico , Quimioterapia Combinada , Quinolonas/administración & dosificación , Adulto , Estudios de Cohortes , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/microbiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Femenino , Humanos , Pulmón/microbiología , Masculino , Mutación , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
8.
JCI Insight ; 6(24)2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34935640

RESUMEN

A hallmark of chronic bacterial infections is the long-term persistence of 1 or more pathogen species at the compromised site. Repeated detection of the same bacterial species can suggest that a single strain or lineage is continually present. However, infection with multiple strains of a given species, strain acquisition and loss, and changes in strain relative abundance can occur. Detecting strain-level changes and their effects on disease is challenging because most methods require labor-intensive isolate-by-isolate analyses, and thus, only a few cells from large infecting populations can be examined. Here, we present a population-level method for enumerating and measuring the relative abundance of strains called population multi-locus sequence typing (PopMLST). The method exploits PCR amplification of strain-identifying polymorphic loci, next-generation sequencing to measure allelic variants, and informatic methods to determine whether variants arise from sequencing errors or low-abundance strains. These features enable PopMLST to simultaneously interrogate hundreds of bacterial cells that are cultured en masse from patient samples or are present in DNA directly extracted from clinical specimens without ex vivo culture. This method could be used to detect epidemic or super-infecting strains, facilitate understanding of strain dynamics during chronic infections, and enable studies that link strain changes to clinical outcomes.


Asunto(s)
Transmisión de Enfermedad Infecciosa/prevención & control , Técnicas de Genotipaje/métodos , Infecciones/genética , Humanos
9.
Elife ; 102021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33448264

RESUMEN

When bacterial cells come in contact, antagonism mediated by the delivery of toxins frequently ensues. The potential for such encounters to have long-term beneficial consequences in recipient cells has not been investigated. Here, we examined the effects of intoxication by DddA, a cytosine deaminase delivered via the type VI secretion system (T6SS) of Burkholderia cenocepacia. Despite its killing potential, we observed that several bacterial species resist DddA and instead accumulate mutations. These mutations can lead to the acquisition of antibiotic resistance, indicating that even in the absence of killing, interbacterial antagonism can have profound consequences on target populations. Investigation of additional toxins from the deaminase superfamily revealed that mutagenic activity is a common feature of these proteins, including a representative we show targets single-stranded DNA and displays a markedly divergent structure. Our findings suggest that a surprising consequence of antagonistic interactions between bacteria could be the promotion of adaptation via the action of directly mutagenic toxins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Burkholderia cenocepacia/genética , Citosina Desaminasa/metabolismo , Escherichia coli/genética , Interacciones Microbianas/fisiología , Mutagénesis
11.
Nature ; 583(7817): 631-637, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32641830

RESUMEN

Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.


Asunto(s)
Toxinas Bacterianas/metabolismo , Citidina Desaminasa/metabolismo , ADN Mitocondrial/genética , Edición Génica/métodos , Genes Mitocondriales/genética , Mitocondrias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Secuencia de Bases , Burkholderia cenocepacia/enzimología , Burkholderia cenocepacia/genética , Respiración de la Célula/genética , Citidina/metabolismo , Citidina Desaminasa/química , Citidina Desaminasa/genética , Genoma Mitocondrial/genética , Células HEK293 , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Mutación , Fosforilación Oxidativa , Ingeniería de Proteínas , ARN Guía de Kinetoplastida/genética , Especificidad por Sustrato , Sistemas de Secreción Tipo VI/metabolismo
12.
Cell Host Microbe ; 28(2): 313-321.e6, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32470328

RESUMEN

Selective and targeted removal of individual species or strains of bacteria from complex communities can be desirable over traditional, broadly acting antibacterials in several contexts. However, generalizable strategies that accomplish this with high specificity have been slow to emerge. Here we develop programmed inhibitor cells (PICs) that direct the potent antibacterial activity of the type VI secretion system (T6SS) against specified target cells. The PICs express surface-displayed nanobodies that mediate antigen-specific cell-cell adhesion to effectively overcome the barrier to T6SS activity in fluid conditions. We demonstrate the capacity of PICs to efficiently deplete low-abundance target bacteria without significant collateral damage to complex microbial communities. The only known requirements for PIC targeting are a Gram-negative cell envelope and a unique cell surface antigen; therefore, this approach should be generalizable to a wide array of bacteria and find application in medical, research, and environmental settings.


Asunto(s)
Antibacterianos/metabolismo , Adhesión Bacteriana/fisiología , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Sistemas de Secreción Tipo VI/metabolismo , Animales , Microbioma Gastrointestinal/fisiología , Bacterias Gramnegativas/clasificación , Ratones , Ratones Endogámicos C57BL
13.
Nature ; 575(7781): 224-228, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31666699

RESUMEN

The human gastrointestinal tract consists of a dense and diverse microbial community, the composition of which is intimately linked to health. Extrinsic factors such as diet and host immunity are insufficient to explain the constituents of this community, and direct interactions between co-resident microorganisms have been implicated as important drivers of microbiome composition. The genomes of bacteria derived from the gut microbiome contain several pathways that mediate contact-dependent interbacterial antagonism1-3. Many members of the Gram-negative order Bacteroidales encode the type VI secretion system (T6SS), which facilitates the delivery of toxic effector proteins into adjacent cells4,5. Here we report the occurrence of acquired interbacterial defence (AID) gene clusters in Bacteroidales species that reside within the human gut microbiome. These clusters encode arrays of immunity genes that protect against T6SS-mediated intra- and inter-species bacterial antagonism. Moreover, the clusters reside on mobile elements, and we show that their transfer is sufficient to confer resistance to toxins in vitro and in gnotobiotic mice. Finally, we identify and validate the protective capability of a recombinase-associated AID subtype (rAID-1) that is present broadly in Bacteroidales genomes. These rAID-1 gene clusters have a structure suggestive of active gene acquisition and include predicted immunity factors of toxins derived from diverse organisms. Our data suggest that neutralization of contact-dependent interbacterial antagonism by AID systems helps to shape human gut microbiome ecology.


Asunto(s)
Bacteroidetes , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Interacciones Microbianas , Sistemas de Secreción Tipo VI/antagonistas & inhibidores , Animales , Bacteroidetes/genética , Bacteroidetes/inmunología , Femenino , Microbioma Gastrointestinal/inmunología , Tracto Gastrointestinal/inmunología , Genes Bacterianos/genética , Humanos , Ratones , Interacciones Microbianas/genética , Interacciones Microbianas/inmunología , Familia de Multigenes/genética , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/inmunología
14.
Cell Rep ; 26(8): 2227-2240.e5, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30784601

RESUMEN

Metagenomic sequencing is a promising approach for identifying and characterizing organisms and their functional characteristics in complex, polymicrobial infections, such as airway infections in people with cystic fibrosis. These analyses are often hampered, however, by overwhelming quantities of human DNA, yielding only a small proportion of microbial reads for analysis. In addition, many abundant microbes in respiratory samples can produce large quantities of extracellular bacterial DNA originating either from biofilms or dead cells. We describe a method for simultaneously depleting DNA from intact human cells and extracellular DNA (human and bacterial) in sputum, using selective lysis of eukaryotic cells and endonuclease digestion. We show that this method increases microbial sequencing depth and, consequently, both the number of taxa detected and coverage of individual genes such as those involved in antibiotic resistance. This finding underscores the substantial impact of DNA from sources other than live bacteria in microbiological analyses of complex, chronic infection specimens.


Asunto(s)
Infecciones Bacterianas/microbiología , Código de Barras del ADN Taxonómico/métodos , Metagenoma , Metagenómica/métodos , Microbiota , Esputo/microbiología , Infecciones Bacterianas/diagnóstico , Humanos , Técnicas de Diagnóstico Molecular/métodos , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/microbiología
15.
Cell ; 175(5): 1380-1392.e14, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30343895

RESUMEN

ADP-ribosylation of proteins can profoundly impact their function and serves as an effective mechanism by which bacterial toxins impair eukaryotic cell processes. Here, we report the discovery that bacteria also employ ADP-ribosylating toxins against each other during interspecies competition. We demonstrate that one such toxin from Serratia proteamaculans interrupts the division of competing cells by modifying the essential bacterial tubulin-like protein, FtsZ, adjacent to its protomer interface, blocking its capacity to polymerize. The structure of the toxin in complex with its immunity determinant revealed two distinct modes of inhibition: active site occlusion and enzymatic removal of ADP-ribose modifications. We show that each is sufficient to support toxin immunity; however, the latter additionally provides unprecedented broad protection against non-cognate ADP-ribosylating effectors. Our findings reveal how an interbacterial arms race has produced a unique solution for safeguarding the integrity of bacterial cell division machinery against inactivating post-translational modifications.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , N-Glicosil Hidrolasas/metabolismo , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , ADP-Ribosilación , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Dominio Catalítico , Proteínas del Citoesqueleto/antagonistas & inhibidores , Escherichia coli/crecimiento & desarrollo , Escherichia coli/inmunología , Escherichia coli/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/genética , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Serratia/metabolismo , Imagen de Lapso de Tiempo
16.
ISME J ; 12(11): 2596-2607, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29946195

RESUMEN

Hard ticks of the order Ixodidae serve as vectors for numerous human pathogens, including the causative agent of Lyme Disease Borrelia burgdorferi. Tick-associated microbes can influence pathogen colonization, offering the potential to inhibit disease transmission through engineering of the tick microbiota. Here, we investigate whether B. burgdorferi encounters abundant bacteria within the midgut of wild adult Ixodes scapularis, its primary vector. Through the use of controlled sequencing methods and confocal microscopy, we find that the majority of field-collected adult I. scapularis harbor limited internal microbial communities that are dominated by endosymbionts. A minority of I. scapularis ticks harbor abundant midgut bacteria and lack B. burgdorferi. We find that the lack of a stable resident midgut microbiota is not restricted to I. scapularis since extension of our studies to I. pacificus, Amblyomma maculatum, and Dermacentor spp showed similar patterns. Finally, bioinformatic examination of the B. burgdorferi genome revealed the absence of genes encoding known interbacterial interaction pathways, a feature unique to the Borrelia genus within the phylum Spirochaetes. Our results suggest that reduced selective pressure from limited microbial populations within ticks may have facilitated the evolutionary loss of genes encoding interbacterial competition pathways from Borrelia.


Asunto(s)
Microbioma Gastrointestinal , Ixodes/microbiología , Animales , Borrelia/genética , Dermacentor/microbiología , Ixodidae/microbiología
17.
Nat Microbiol ; 3(4): 440-446, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29459733

RESUMEN

Bacteria in polymicrobial habitats contend with a persistent barrage of competitors, often under rapidly changing environmental conditions 1 . The direct antagonism of competitor cells is thus an important bacterial survival strategy 2 . Towards this end, many bacterial species employ an arsenal of antimicrobial effectors with multiple activities; however, the benefits conferred by the simultaneous deployment of diverse toxins are unknown. Here we show that the multiple effectors delivered to competitor bacteria by the type VI secretion system (T6SS) of Pseudomonas aeruginosa display conditional efficacy and act synergistically. One of these effectors, Tse4, is most active in high-salinity environments and synergizes with effectors that degrade the cell wall or inactivate intracellular electron carriers. We find Tse4 synergizes with these disparate mechanisms by forming pores that disrupt the ΔΨ component of the proton motive force. Our results provide evidence that the concomitant delivery of a cocktail of effectors serves as a bet-hedging strategy to promote bacterial competitiveness in the face of unpredictable and variable environmental conditions.


Asunto(s)
Antibacterianos/metabolismo , Antibiosis/fisiología , Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Pared Celular/metabolismo , Regulación Bacteriana de la Expresión Génica
18.
PLoS Negl Trop Dis ; 12(1): e0006156, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29329299

RESUMEN

Non-typhoidal Salmonella (NTS) is a leading cause of bloodstream infections in Africa, but the various contributions of host susceptibility versus unique pathogen virulence factors are unclear. We used data from a population-based surveillance platform (population ~25,000) between 2007-2014 and NTS genome-sequencing to compare host and pathogen-specific factors between individuals presenting with NTS bacteremia and those presenting with NTS diarrhea. Salmonella Typhimurium ST313 and Salmonella Enteritidis ST11 were the most common isolates. Multi-drug resistant strains of NTS were more commonly isolated from patients presenting with NTS bacteremia compared to NTS diarrhea. This relationship was observed in patients under age five [aOR = 15.16, 95% CI (2.84-81.05), P = 0.001], in patients five years and older, [aOR = 6.70 95% CI (2.25-19.89), P = 0.001], in HIV-uninfected patients, [aOR = 21.61, 95% CI (2.53-185.0), P = 0.005], and in patients infected with Salmonella serogroup B [aOR = 5.96, 95% CI (2.28-15.56), P < 0.001] and serogroup D [aOR = 14.15, 95% CI (1.10-182.7), P = 0.042]. Thus, multi-drug-resistant NTS was strongly associated with bacteremia compared to diarrhea among children and adults. This association was seen in HIV-uninfected individuals infected with either S. Typhimurium or S. Enteritidis. Risk of developing bacteremia from NTS infection may be driven by virulence properties of the Salmonella pathogen.


Asunto(s)
Bacteriemia/epidemiología , Farmacorresistencia Bacteriana Múltiple , Infecciones por Salmonella/epidemiología , Salmonella enterica/efectos de los fármacos , Salmonella enterica/aislamiento & purificación , Adolescente , Adulto , Anciano , Bacteriemia/microbiología , Niño , Preescolar , ADN Bacteriano/química , ADN Bacteriano/genética , Diarrea/epidemiología , Diarrea/microbiología , Femenino , Humanos , Lactante , Kenia/epidemiología , Masculino , Persona de Mediana Edad , Infecciones por Salmonella/microbiología , Salmonella enterica/genética , Análisis de Secuencia de ADN , Adulto Joven
19.
Cell Host Microbe ; 22(3): 411-419.e4, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28910638

RESUMEN

Although gut microbiome composition is well defined, the mechanisms underlying community assembly remain poorly understood. Bacteroidales possess three genetic architectures (GA1-3) of the type VI secretion system (T6SS), an effector delivery pathway that mediates interbacterial competition. Here we define the distribution and role of GA1-3 in the human gut using metagenomic analysis. We find that adult microbiomes harbor limited effector and cognate immunity genes, suggesting selection for compatibility at the species (GA1 and GA2) and strain (GA3) levels. Bacteroides fragilis GA3 is known to mediate potent inter-strain competition, and we observe GA3 enrichment among strains colonizing infant microbiomes, suggesting competition early in life. Additionally, GA3 is associated with increased Bacteroides abundance, indicating that this system confers an advantage in Bacteroides-rich ecosystems. Collectively, these analyses uncover the prevalence of T6SS-dependent competition and reveal its potential role in shaping human gut microbial composition.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Sistemas de Secreción Tipo VI/metabolismo , Adolescente , Adulto , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Bacteroides/clasificación , Bacteroides/genética , Bacteroides/aislamiento & purificación , Bacteroides/metabolismo , Biodiversidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Sistemas de Secreción Tipo VI/genética , Adulto Joven
20.
Elife ; 62017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28696203

RESUMEN

The Firmicutes are a phylum of bacteria that dominate numerous polymicrobial habitats of importance to human health and industry. Although these communities are often densely colonized, a broadly distributed contact-dependent mechanism of interbacterial antagonism utilized by Firmicutes has not been elucidated. Here we show that proteins belonging to the LXG polymorphic toxin family present in Streptococcus intermedius mediate cell contact- and Esx secretion pathway-dependent growth inhibition of diverse Firmicute species. The structure of one such toxin revealed a previously unobserved protein fold that we demonstrate directs the degradation of a uniquely bacterial molecule required for cell wall biosynthesis, lipid II. Consistent with our functional data linking LXG toxins to interbacterial interactions in S. intermedius, we show that LXG genes are prevalent in the human gut microbiome, a polymicrobial community dominated by Firmicutes. We speculate that interbacterial antagonism mediated by LXG toxins plays a critical role in shaping Firmicute-rich bacterial communities.


Asunto(s)
Antibiosis , Adhesión Bacteriana , Toxinas Bacterianas/metabolismo , Streptococcus intermedius/fisiología , Toxinas Bacterianas/química , Cristalografía por Rayos X , Humanos , Viabilidad Microbiana/efectos de los fármacos , Modelos Moleculares , Conformación Proteica , Streptococcus intermedius/crecimiento & desarrollo , Streptococcus intermedius/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA