Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 133(11): 3101-3117, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32809035

RESUMEN

KEY MESSAGE: Comparative assessment identified naïve interaction model, and naïve and informed interaction GS models suitable for achieving higher prediction accuracy in groundnut keeping in mind the high genotype × environment interaction for complex traits. Genomic selection (GS) can be an efficient and cost-effective breeding approach which captures both small- and large-effect genetic factors and therefore promises to achieve higher genetic gains for complex traits such as yield and oil content in groundnut. A training population was constituted with 340 elite lines followed by genotyping with 58 K 'Axiom_Arachis' SNP array and phenotyping for key agronomic traits at three locations in India. Four GS models were tested using three different random cross-validation schemes (CV0, CV1 and CV2). These models are: (1) model 1 (M1 = E + L) which includes the main effects of environment (E) and line (L); (2) model 2 (M2 = E + L + G) which includes the main effects of markers (G) in addition to E and L; (3) model 3 (M3 = E + L + G + GE), a naïve interaction model; and (4) model 4 (E + L + G + LE + GE), a naïve and informed interaction model. Prediction accuracy estimated for four models indicated clear advantage of the inclusion of marker information which was reflected in better prediction accuracy achieved with models M2, M3 and M4 as compared to M1 model. High prediction accuracies (> 0.600) were observed for days to 50% flowering, days to maturity, hundred seed weight, oleic acid, rust@90 days, rust@105 days and late leaf spot@90 days, while medium prediction accuracies (0.400-0.600) were obtained for pods/plant, shelling  %, and total yield/plant. Assessment of comparative prediction accuracy for different GS models to perform selection for untested genotypes, and unobserved and unevaluated environments provided greater insights on potential application of GS breeding in groundnut.


Asunto(s)
Arachis/genética , Interacción Gen-Ambiente , Modelos Genéticos , Fitomejoramiento , Alelos , Genotipo , India , Fenotipo , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable
2.
Theor Appl Genet ; 133(5): 1679-1702, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32328677

RESUMEN

KEY MESSAGE: Groundnut has entered now in post-genome era enriched with optimum genomic and genetic resources to facilitate faster trait dissection, gene discovery and accelerated genetic improvement for developing climate-smart varieties. Cultivated groundnut or peanut (Arachis hypogaea), an allopolyploid oilseed crop with a large and complex genome, is one of the most nutritious food. This crop is grown in more than 100 countries, and the low productivity has remained the biggest challenge in the semiarid tropics. Recently, the groundnut research community has witnessed fast progress and achieved several key milestones in genomics research including genome sequence assemblies of wild diploid progenitors, wild tetraploid and both the subspecies of cultivated tetraploids, resequencing of diverse germplasm lines, genome-wide transcriptome atlas and cost-effective high and low-density genotyping assays. These genomic resources have enabled high-resolution trait mapping by using germplasm diversity panels and multi-parent genetic populations leading to precise gene discovery and diagnostic marker development. Furthermore, development and deployment of diagnostic markers have facilitated screening early generation populations as well as marker-assisted backcrossing breeding leading to development and commercialization of some molecular breeding products in groundnut. Several new genomics applications/technologies such as genomic selection, speed breeding, mid-density genotyping assay and genome editing are in pipeline. The integration of these new technologies hold great promise for developing climate-smart, high yielding and more nutritious groundnut varieties in the post-genome era.


Asunto(s)
Fabaceae/crecimiento & desarrollo , Fabaceae/genética , Genoma de Planta , Genómica/métodos , Fitomejoramiento/normas , Plantas Modificadas Genéticamente/genética , Sitios de Carácter Cuantitativo , Genética de Población , Fenotipo , Plantas Modificadas Genéticamente/crecimiento & desarrollo
3.
Front Plant Sci ; 11: 29, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153601

RESUMEN

Groundnut is an important global food and oil crop that underpins agriculture-dependent livelihood strategies meeting food, nutrition, and income security. Aflatoxins, pose a major challenge to increased competitiveness of groundnut limiting access to lucrative markets and affecting populations that consume it. Other drivers of low competitiveness include allergens and limited shelf life occasioned by low oleic acid profile in the oil. Thus grain off-takers such as consumers, domestic, and export markets as well as processors need solutions to increase profitability of the grain. There are some technological solutions to these challenges and this review paper highlights advances in crop improvement to enhance groundnut grain quality and nutrient profile for food, nutrition, and economic benefits. Significant advances have been made in setting the stage for marker-assisted allele pyramiding for different aflatoxin resistance mechanisms-in vitro seed colonization, pre-harvest aflatoxin contamination, and aflatoxin production-which, together with pre- and post-harvest management practices, will go a long way in mitigating the aflatoxin menace. A breakthrough in aflatoxin control is in sight with overexpression of antifungal plant defensins, and through host-induced gene silencing in the aflatoxin biosynthetic pathway. Similarly, genomic and biochemical approaches to allergen control are in good progress, with the identification of homologs of the allergen encoding genes and development of monoclonal antibody based ELISA protocol to screen for and quantify major allergens. Double mutation of the allotetraploid homeologous genes, FAD2A and FAD2B, has shown potential for achieving >75% oleic acid as demonstrated among introgression lines. Significant advances have been made in seed systems research to bridge the gap between trait discovery, deployment, and delivery through innovative partnerships and action learning.

4.
Front Microbiol ; 11: 227, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194520

RESUMEN

Aflatoxins are secondary metabolites produced by soilborne saprophytic fungus Aspergillus flavus and closely related species that infect several agricultural commodities including groundnut and maize. The consumption of contaminated commodities adversely affects the health of humans and livestock. Aflatoxin contamination also causes significant economic and financial losses to producers. Research efforts and significant progress have been made in the past three decades to understand the genetic behavior, molecular mechanisms, as well as the detailed biology of host-pathogen interactions. A range of omics approaches have facilitated better understanding of the resistance mechanisms and identified pathways involved during host-pathogen interactions. Most of such studies were however undertaken in groundnut and maize. Current efforts are geared toward harnessing knowledge on host-pathogen interactions and crop resistant factors that control aflatoxin contamination. This study provides a summary of the recent progress made in enhancing the understanding of the functional biology and molecular mechanisms associated with host-pathogen interactions during aflatoxin contamination in groundnut and maize.

6.
ScientificWorldJournal ; 2014: 125967, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25436223

RESUMEN

In the changing global environmental scenarios, water scarcity and recurrent drought impose huge reductions to the peanut (Arachis hypogaea L.) crop yield. In plants, osmotic adjustments associated with efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms. Mannitol, a compatible solute, is known to scavenge hydroxyl radicals generated during various abiotic stresses, thereby conferring tolerance to water-deficit stress in many plant species. However, peanut plant is not known to synthesize mannitol. Therefore, bacterial mtlD gene coding for mannitol 1-phosphate dehydrogenase under the control of constitutive promoter CaMV35S was introduced and overexpressed in the peanut cv. GG 20 using Agrobacterium tumefaciens-mediated transformation. A total of eight independent transgenic events were confirmed at molecular level by PCR, Southern blotting, and RT-PCR. Transgenic lines had increased amount of mannitol and exhibited enhanced tolerance in response to water-deficit stress. Improved performance of the mtlD transgenics was indicated by excised-leaf water loss assay and relative water content under water-deficit stress. Better performance of transgenics was due to the ability of the plants to synthesize mannitol. However, regulation of mtlD gene expression in transgenic plants remains to be elucidated.


Asunto(s)
Arachis/genética , Sequías , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/fisiología , Manitol/metabolismo , Plantas Modificadas Genéticamente/genética , Arachis/enzimología , Componentes Aéreos de las Plantas , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Deshidrogenasas del Alcohol de Azúcar/biosíntesis , Deshidrogenasas del Alcohol de Azúcar/genética
7.
Indian J Virol ; 24(2): 205-13, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24426277

RESUMEN

The absence of resistance genes against biotic stresses like Tobacco streak virus (TSV) within compatible peanut germplasm necessitates the deployment of genetic engineering strategy to develop transgenic resistance. Transgenic resistance in peanut (Arachis hypogaea L.) to peanut stem necrosis disease caused by TSV was obtained by transferring coat protein (CP) gene of TSV through Agrobacterium-mediated transformation of de-embryonated cotyledons and immature leaves of peanut cultivars Kadiri 6 (K6) and Kadiri 134 (K134). Integration of the transgene in T1, T2 and T3 generations were confirmed by PCR with gene-specific primers. On the basis of segregation analysis of the PCR amplicons, homozygosity was confirmed in progeny from five transgenic lines. Six transgenic plants from three different single copy transgenic lines homozygous for the transgene were selected for challenge inoculation in T3 generations. The transgenic lines remained symptomless throughout and showed traces or no systemic accumulation of virus indicating the tolerance/resistance to the TSV infection. CP gene expression was observed in transgenic lines by RT-PCR, real-time PCR and ELISA. The findings provide an effective strategy for developing peanut with resistance to peanut stem necrosis disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA