RESUMEN
A series of 19 novel α-aminophosphonate-tetrahydroisoquinoline hybrids were synthesized through a cross dehydrogenative coupling reaction between N-aryl-tetrahydroisoquinolines and dialkylphosphites, using tert-butyl hydroperoxide as oxidazing agent. This simple procedure provided products with high atom economy and moderate to high yields. In vitro cholinesterase inhibitory activity of these compounds was evaluated. All the synthesized compounds showed good to excellent selective inhibition against butyrylcholinesterase. Compound 3bc was found to be the most active derivative with an IC50 of 9 nM. Molecular modelling studies suggested that the inhibitor is located in the peripheral anionic site (PAS) of the enzyme and interacts with some residue of the catalytic anionic site. Kinetic studies revealed that 3bc acts as a non-competitive inhibitor. Predicted ADME showed good pharmacokinetics and drug-likeness properties for most hybrids. Each newly synthesized compound was characterized by IR, 1H NMR, 13C NMR, 31P NMR spectral studies and also HRMS. The results of this study suggest that α-aminophosphonate-tetrahydroisoquinoline hybrids can be promising lead compounds in the discovery of new and improved drugs for the treatment of Alzheimer's disease and related neurodegenerative disorders.
Asunto(s)
Enfermedad de Alzheimer , Tetrahidroisoquinolinas , Humanos , Inhibidores de la Colinesterasa/química , Butirilcolinesterasa/metabolismo , Cinética , Acetilcolinesterasa/metabolismo , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Tetrahidroisoquinolinas/farmacología , Enfermedad de Alzheimer/tratamiento farmacológicoRESUMEN
The oxidative α-functionalization of 2-aryl-1,2,3,4-tetrahydroisoquinolines (THIQs) promoted by a versatile heterogeneous nanocatalyst consisting of copper nanoparticles immobilized on silica-coated maghemite (CuNPs/MagSilica) has been accomplished. The methodology was successfully applied in the cross-dehydrogenative coupling (CDC) reaction of N-aryl THIQs and other tertiary amines with nitromethane as a pro-nucleophile (aza-Henry reaction) and the α-oxidation of THIQs with O2 as a green oxidant. Phosphite, alkyne, or indole derivatives were also shown to be suitable candidates for their use as pro-nucleophiles in the CDC reaction with THIQs. The catalyst, with very low copper loading (0.4-1.0 mol % Cu), could be easily recovered by means of an external magnet and reused in four cycles without significant loss of activity.
Asunto(s)
Fosfitos , Tetrahidroisoquinolinas , Cobre , Catálisis , Alquinos , Dióxido de Silicio , Oxidantes , Aminas , Estrés Oxidativo , IndolesRESUMEN
The synthesis and characterisation of new dyes based on indolizines bearing catechol groups in their structure is presented. The preparation was carried out through a simple three component one-pot reaction promoted by CuNPs/C, between pyridine-2-carbaldehyde, an aromatic alkyne and a tetrahydroisoquinoline (THIQ) functionalized with catechol groups. The products were isolated in 30%-34% yield, which was considered more than acceptable considering that the catechol hydroxyl groups were not protected prior to reaction. In view of the colour developed by the products and their response to the acidic and basic conditions of the medium, product 3aa was studied by UV-Vis and NMR spectroscopies at different pH values. We concluded that product 3aa suffered two deprotonations at pKa of 4.4 and 9.5, giving three species in a pH range between 2-12, with colours varying from light red to deep orange. The reversibility of the process observed for 3aa at different pH values, together with its changes in colour, make this new family of products attractive candidates to use them as pH indicators.
RESUMEN
A new heterogeneous catalytic system consisting of cobalt nanoparticles (CoNPs) supported on MgO and tert-butyl hydroperoxide (TBHP) as oxidant is presented. This CoNPs@MgO/t-BuOOH catalytic combination allowed the epoxidation of a variety of olefins with good to excellent yield and high selectivity. The catalyst preparation is simple and straightforward from commercially available starting materials and it could be recovered and reused maintaining its unaltered high activity.
RESUMEN
BACKGROUND: 1α,25-dihydroxy vitamin D3 (calcitriol) shows potent growth-inhibitory properties on different cancer cell lines, but its hypercalcemic effects have severely hampered its therapeutic application. Therefore, it is important to develop synthetic calcitriol analogues that retain or even increase its antitumoral effects and lack hypercalcemic activity. Based on previous evidence of the potent antitumor effects of the synthetic alkynylphosphonate EM1 analogue, we have now synthesized a derivative called SG. OBJECTIVE: The aim of the present work is to evaluate the calcemic activity and the antitumor effect of SG, comparing these effects with those exerted by calcitriol and with those previously published for EM1. In addition, we propose to analyze by in silico studies, the chemical structure-biological function relationship of these molecules. METHODS: We performed the synthesis of vinylphosphonate SG analogue; in vitro assays on different cancer cell lines; in vivo assays on mice; and in silico assays applying computational molecular modeling. RESULTS: The SG compound lacks hypercalcemic activity, similar to the parent compound EM1. However, the antitumor activity was blunted, as no antiproliferative or anti-migratory effects were observed. By in silico assays, we demonstrated that SG analogue has a lower affinity for the VDRligand- binding domain than the EM1 compound due to lack of interaction with the important residues His305 and His397. CONCLUSION: These results demonstrate that the chemical modification in the lateral side chain of the SG analogue affects the antitumoral activity observed previously for EM1 but does not affect the calcemic activity. These results contribute to the rational design and synthesis of novel calcitriol analogues.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Calcitriol/química , Calcitriol/farmacología , Organofosfonatos/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Humanos , Relación Estructura-ActividadRESUMEN
A simple and mild methodology for the direct synthesis of alkynylphosphonates is presented. The reaction of a variety of terminal alkynes with dialkyl phosphites in the presence Cu2O (14 mol %) led to the formation of the corresponding alkynylphosphonates in good to excellent yields. Reactions are performed under air, in acetonitrile as solvent, and in the absence of base or ligand additives. This new methodology is compatible with the presence of a wide variety of functional groups on the starting alkynes and can be scaled up to a gram scale.
RESUMEN
A versatile and highly efficient strategy to construct a xanthone skeleton via a ligand-free intermolecular catalytic coupling of 2-substituted benzaldehydes and a wide range of phenols has been developed. For this purpose, a novel and magnetically recoverable catalyst consisting of copper nanoparticles on nanosized silica coated maghemite is presented. The reaction proceeds smoothly with easy recovery and reuse of the catalyst. The methodology is compatible with various functional groups and provides an attractive protocol for the generation of a small library of xanthones in very good yield.
Asunto(s)
Benzaldehídos/química , Cobre/química , Nanopartículas de Magnetita/química , Fenoles/química , Xantonas/síntesis química , Catálisis , Estructura Molecular , Xantonas/químicaRESUMEN
Here, we describe the design and synthesis of diethyl [(5Z,7E)-(1S,3R)-1,3-dihydroxy-9,10-secochola-5,7,10(19)-trien-23-in-24-yl] phosphonate (compound 10), which combines the low calcemic properties of phosphonates with the decreased metabolic inactivation due to the presence of a triple bond in C-24 and studied its in vitro effects on several cancer cell lines and its in vivo effects on blood calcium levels. We demonstrate that this compound is a potent antiproliferative vitamin D analogue, showing lack of calcemic effects in vivo.