Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 617(7961): 574-580, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36996871

RESUMEN

As of August 2022, clusters of acute severe hepatitis of unknown aetiology in children have been reported from 35 countries, including the USA1,2. Previous studies have found human adenoviruses (HAdVs) in the blood from patients in Europe and the USA3-7, although it is unclear whether this virus is causative. Here we used PCR testing, viral enrichment-based sequencing and agnostic metagenomic sequencing to analyse samples from 16 HAdV-positive cases from 1 October 2021 to 22 May 2022, in parallel with 113 controls. In blood from 14 cases, adeno-associated virus type 2 (AAV2) sequences were detected in 93% (13 of 14), compared to 4 (3.5%) of 113 controls (P < 0.001) and to 0 of 30 patients with hepatitis of defined aetiology (P < 0.001). In controls, HAdV type 41 was detected in blood from 9 (39.1%) of the 23 patients with acute gastroenteritis (without hepatitis), including 8 of 9 patients with positive stool HAdV testing, but co-infection with AAV2 was observed in only 3 (13.0%) of these 23 patients versus 93% of cases (P < 0.001). Co-infections by Epstein-Barr virus, human herpesvirus 6 and/or enterovirus A71 were also detected in 12 (85.7%) of 14 cases, with higher herpesvirus detection in cases versus controls (P < 0.001). Our findings suggest that the severity of the disease is related to co-infections involving AAV2 and one or more helper viruses.


Asunto(s)
Infecciones por Adenovirus Humanos , Coinfección , Dependovirus , Hepatitis , Niño , Humanos , Enfermedad Aguda , Infecciones por Adenovirus Humanos/epidemiología , Infecciones por Adenovirus Humanos/virología , Coinfección/epidemiología , Coinfección/virología , Dependovirus/genética , Dependovirus/aislamiento & purificación , Infecciones por Virus de Epstein-Barr/epidemiología , Infecciones por Virus de Epstein-Barr/virología , Hepatitis/epidemiología , Hepatitis/virología , Herpesvirus Humano 4/aislamiento & purificación , Herpesvirus Humano 6/aislamiento & purificación , Enterovirus Humano A/aislamiento & purificación , Virus Helper/aislamiento & purificación
2.
Microbiol Resour Announc ; 9(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31896628

RESUMEN

Bacillus anthracis is the causative agent of anthrax, a disease of livestock, wildlife, and humans. Here, we present the draft genome sequences of five historical B. anthracis strains that were preserved as lyophilates in glass vials for decades.

3.
Plasmid ; 83: 8-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26746359

RESUMEN

The genomes of a diverse set of Escherichia coli, including many Shiga toxin-producing strains of various serotypes were determined. A total of 39 plasmids were identified among these strains, and many carried virulence or putative virulence genes of Shiga toxin-producing E. coli strains, virulence genes for other pathogenic E. coli groups, and some had combinations of these genes. Among the novel plasmids identified were eight that carried resistance genes to aminoglycosides, carbapenems, penicillins, cephalosporins, chloramphenicol, dihydrofolate reductase inhibitors, sulfonamides, tetracyclines and resistance to heavy metals. Two of the plasmids carried six of these resistance genes and two novel IncHI2 plasmids were also identified. The results of this study showed that plasmids carrying diverse resistance and virulence genes of various pathogenic E. coli groups can be found in E. coli strains and serotypes regardless of the isolate's source and therefore, is consistent with the premise that these mobile elements carrying these traits may be broadly disseminated among E. coli.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Escherichia coli/patogenicidad , Plásmidos/efectos de los fármacos , Animales , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Genes Bacterianos , Genoma Bacteriano , Humanos , Metales Pesados/farmacología , Plásmidos/genética , Escherichia coli Shiga-Toxigénica/efectos de los fármacos , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/patogenicidad
4.
Biosensors (Basel) ; 5(1): 51-68, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25664526

RESUMEN

The DNA sequence of the O-antigen gene clusters of Escherichia coli serogroups O62, O68, O131, O140, O142, and O163 was determined, and primers based on the wzx (O-antigen flippase) and/or wzy (O-antigen polymerase) genes within the O-antigen gene clusters were designed and used in PCR assays to identify each serogroup. Specificity was tested with E. coli reference strains, field isolates belonging to the target serogroups, and non-E. coli bacteria. The PCR assays were highly specific for the respective serogroups; however, the PCR assay targeting the O62 wzx gene reacted positively with strains belonging to E. coli O68, which was determined by serotyping. Analysis of the O-antigen gene cluster sequences of serogroups O62 and O68 reference strains showed that they were 94% identical at the nucleotide level, although O62 contained an insertion sequence (IS) element located between the rmlA and rmlC genes within the O-antigen gene cluster. A PCR assay targeting the rmlA and rmlC genes flanking the IS element was used to differentiate O62 and O68 serogroups. The PCR assays developed in this study can be used for the detection and identification of E. coli O62/O68, O131, O140, O142, and O163 strains isolated from different sources.

5.
Genome Biol ; 14(9): R101, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24034426

RESUMEN

BACKGROUND: The short reads output by first- and second-generation DNA sequencing instruments cannot completely reconstruct microbial chromosomes. Therefore, most genomes have been left unfinished due to the significant resources required to manually close gaps in draft assemblies. Third-generation, single-molecule sequencing addresses this problem by greatly increasing sequencing read length, which simplifies the assembly problem. RESULTS: To measure the benefit of single-molecule sequencing on microbial genome assembly, we sequenced and assembled the genomes of six bacteria and analyzed the repeat complexity of 2,267 complete bacteria and archaea. Our results indicate that the majority of known bacterial and archaeal genomes can be assembled without gaps, at finished-grade quality, using a single PacBio RS sequencing library. These single-library assemblies are also more accurate than typical short-read assemblies and hybrid assemblies of short and long reads. CONCLUSIONS: Automated assembly of long, single-molecule sequencing data reduces the cost of microbial finishing to $1,000 for most genomes, and future advances in this technology are expected to drive the cost lower. This is expected to increase the number of completed genomes, improve the quality of microbial genome databases, and enable high-fidelity, population-scale studies of pan-genomes and chromosomal organization.


Asunto(s)
Mapeo Contig/métodos , Genoma Arqueal , Genoma Bacteriano , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Algoritmos , Secuencia de Bases , Mapeo Contig/estadística & datos numéricos , Escherichia coli/genética , Francisella tularensis/genética , Tamaño del Genoma , Biblioteca Genómica , Mannheimia haemolytica/genética , Datos de Secuencia Molecular , Salmonella enterica/genética , Análisis de Secuencia de ADN/economía , Análisis de Secuencia de ADN/estadística & datos numéricos
6.
Genome Announc ; 1(1)2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23405332

RESUMEN

The Bacillus anthracis Carbosap genome, which includes the pXO1 and pXO2 plasmids, has been shown to encode the major B. anthracis virulence factors, yet this strain's attenuation has not yet been explained. Here we report the draft genome sequence of this strain, and a comparison to fully virulent B. anthracis.

7.
J Bacteriol ; 194(22): 6356-7, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23105085

RESUMEN

Burkholderia multivorans is a Gram-negative bacterium and a member of the Burkholderia cepacia complex, which is frequently associated with respiratory infections in people with cystic fibrosis (CF) and chronic granulomatous disease (CGD). We are reporting the genome sequences of 4 B. multivorans strains, 2 from CF patients and 2 from CGD patients.


Asunto(s)
Burkholderia/clasificación , Burkholderia/genética , Fibrosis Quística/microbiología , Genoma Bacteriano , Enfermedad Granulomatosa Crónica/microbiología , Humanos , Datos de Secuencia Molecular
8.
PLoS Genet ; 8(7): e1002784, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22792073

RESUMEN

We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45-52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire.


Asunto(s)
Genoma Bacteriano , Plantas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Análisis de Secuencia de ADN , Animales , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Bacteriocinas/genética , Heterogeneidad Genética , Variación Genética , Interacciones Huésped-Patógeno/genética , Insectos/genética , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas/genética , Plantas/microbiología , Secuencias Repetitivas de Ácidos Nucleicos/genética , Resorcinoles/metabolismo
9.
PLoS One ; 7(3): e33280, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22432010

RESUMEN

Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.


Asunto(s)
Borrelia burgdorferi/genética , Inestabilidad Genómica/genética , Genómica , Enfermedad de Lyme/microbiología , Plásmidos/genética , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/aislamiento & purificación , Cromosomas Bacterianos/genética , ADN Bacteriano/metabolismo , Variación Genética , Genoma Bacteriano , Recombinación Homóloga/genética , Humanos , Mutación/genética , Sistemas de Lectura Abierta/genética , Seudogenes/genética , Análisis de Secuencia de ADN , Secuencias Repetidas en Tándem/genética
10.
Genome Biol ; 12(10): R100, 2011 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-22004680

RESUMEN

BACKGROUND: Ichthyophthirius multifiliis, commonly known as Ich, is a highly pathogenic ciliate responsible for 'white spot', a disease causing significant economic losses to the global aquaculture industry. Options for disease control are extremely limited, and Ich's obligate parasitic lifestyle makes experimental studies challenging. Unlike most well-studied protozoan parasites, Ich belongs to a phylum composed primarily of free-living members. Indeed, it is closely related to the model organism Tetrahymena thermophila. Genomic studies represent a promising strategy to reduce the impact of this disease and to understand the evolutionary transition to parasitism. RESULTS: We report the sequencing, assembly and annotation of the Ich macronuclear genome. Compared with its free-living relative T. thermophila, the Ich genome is reduced approximately two-fold in length and gene density and three-fold in gene content. We analyzed in detail several gene classes with diverse functions in behavior, cellular function and host immunogenicity, including protein kinases, membrane transporters, proteases, surface antigens and cytoskeletal components and regulators. We also mapped by orthology Ich's metabolic pathways in comparison with other ciliates and a potential host organism, the zebrafish Danio rerio. CONCLUSIONS: Knowledge of the complete protein-coding and metabolic potential of Ich opens avenues for rational testing of therapeutic drugs that target functions essential to this parasite but not to its fish hosts. Also, a catalog of surface protein-encoding genes will facilitate development of more effective vaccines. The potential to use T. thermophila as a surrogate model offers promise toward controlling 'white spot' disease and understanding the adaptation to a parasitic lifestyle.


Asunto(s)
Infecciones por Cilióforos/prevención & control , Genómica/métodos , Hymenostomatida/genética , Estadios del Ciclo de Vida , Pez Cebra/parasitología , Animales , Antígenos de Protozoos/genética , Composición de Base , Mapeo Cromosómico , ADN Mitocondrial/genética , ADN Protozoario/genética , Bases de Datos Genéticas , Genes Protozoarios , Tamaño del Genoma , Interacciones Huésped-Parásitos , Hymenostomatida/clasificación , Hymenostomatida/crecimiento & desarrollo , Hymenostomatida/patogenicidad , Ictaluridae/parasitología , Macronúcleo/genética , Proteínas de Transporte de Membrana/genética , Redes y Vías Metabólicas , Mitocondrias/enzimología , Mitocondrias/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Anotación de Secuencia Molecular , Filogenia , Proteínas Quinasas/clasificación , Proteínas Quinasas/genética , Proteínas Protozoarias/genética , ARN Protozoario/genética , Pez Cebra/genética
11.
J Bacteriol ; 193(19): 5450-64, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21784931

RESUMEN

Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.


Asunto(s)
Genoma Bacteriano/genética , Xanthomonas/genética , Arabidopsis/microbiología , Datos de Secuencia Molecular , Oryza/microbiología , Xanthomonas/fisiología
12.
PLoS One ; 6(4): e19054, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21559501

RESUMEN

Yersinia pestis is the causative agent of the plague. Y. pestis KIM 10+ strain was passaged and selected for loss of the 102 kb pgm locus, resulting in an attenuated strain, KIM D27. In this study, whole genome sequencing was performed on KIM D27 in order to identify any additional differences. Initial assemblies of 454 data were highly fragmented, and various bioinformatic tools detected between 15 and 465 SNPs and INDELs when comparing both strains, the vast majority associated with A or T homopolymer sequences. Consequently, Illumina sequencing was performed to improve the quality of the assembly. Hybrid sequence assemblies were performed and a total of 56 validated SNP/INDELs and 5 repeat differences were identified in the D27 strain relative to published KIM 10+ sequence. However, further analysis showed that 55 of these SNP/INDELs and 3 repeats were errors in the KIM 10+ reference sequence. We conclude that both 454 and Illumina sequencing were required to obtain the most accurate and rapid sequence results for Y. pestis KIMD27. SNP and INDELS calls were most accurate when both Newbler and CLC Genomics Workbench were employed. For purposes of obtaining high quality genome sequence differences between strains, any identified differences should be verified in both the new and reference genomes.


Asunto(s)
Biología Computacional/métodos , Análisis de Secuencia de ADN/métodos , Yersinia pestis/genética , Yersinia pestis/metabolismo , Cartilla de ADN/genética , Genoma Bacteriano , Humanos , Polimorfismo de Nucleótido Simple , Secuencias Repetitivas de Ácidos Nucleicos , Reproducibilidad de los Resultados , Especificidad de la Especie , Virulencia
13.
PLoS One ; 4(7): e6085, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19568419

RESUMEN

Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the host's nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2-40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (>100). However, unlike S. degradans, which degrades a broad spectrum (>10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels.


Asunto(s)
Bivalvos/microbiología , Genoma Bacteriano , Biología Marina , Proteobacteria/genética , Simbiosis , Madera , Animales , Bivalvos/metabolismo , Biología Computacional , Nitrógeno/metabolismo , Filogenia , Polisacáridos/metabolismo , Proteobacteria/clasificación , Proteobacteria/enzimología , Proteobacteria/fisiología , Percepción de Quorum , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
14.
BMC Genomics ; 9: 204, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18452608

RESUMEN

BACKGROUND: Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. RESULTS: The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. CONCLUSION: Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world.


Asunto(s)
Evolución Molecular , Genoma Bacteriano/genética , Oryza/microbiología , Xanthomonas/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Elementos Transponibles de ADN/genética , Duplicación de Gen , Reordenamiento Génico , Transferencia de Gen Horizontal , Genómica , Repeticiones de Microsatélite , Reproducibilidad de los Resultados , Factores de Tiempo
15.
PLoS Pathog ; 3(10): 1401-13, 2007 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17953480

RESUMEN

Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The approximately 150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development.


Asunto(s)
Babesia bovis/genética , ADN Protozoario/análisis , Genes Protozoarios , Plasmodium falciparum/genética , Theileria parva/genética , Animales , Antígenos de Protozoos/inmunología , Babesia bovis/inmunología , Babesia bovis/metabolismo , Babesiosis/parasitología , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Cromosomas , ADN Complementario/análisis , Evolución Molecular , Biblioteca Genómica , Datos de Secuencia Molecular , Plasmodium falciparum/inmunología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Análisis de Secuencia de ADN , Especificidad de la Especie , Sintenía , Theileria parva/inmunología , Theileria parva/metabolismo
16.
PLoS Genet ; 2(12): e214, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17194220

RESUMEN

Arthrobacter sp. strains are among the most frequently isolated, indigenous, aerobic bacterial genera found in soils. Member of the genus are metabolically and ecologically diverse and have the ability to survive in environmentally harsh conditions for extended periods of time. The genome of Arthrobacter aurescens strain TC1, which was originally isolated from soil at an atrazine spill site, is composed of a single 4,597,686 basepair (bp) circular chromosome and two circular plasmids, pTC1 and pTC2, which are 408,237 bp and 300,725 bp, respectively. Over 66% of the 4,702 open reading frames (ORFs) present in the TC1 genome could be assigned a putative function, and 13.2% (623 genes) appear to be unique to this bacterium, suggesting niche specialization. The genome of TC1 is most similar to that of Tropheryma, Leifsonia, Streptomyces, and Corynebacterium glutamicum, and analyses suggest that A. aurescens TC1 has expanded its metabolic abilities by relying on the duplication of catabolic genes and by funneling metabolic intermediates generated by plasmid-borne genes to chromosomally encoded pathways. The data presented here suggest that Arthrobacter's environmental prevalence may be due to its ability to survive under stressful conditions induced by starvation, ionizing radiation, oxygen radicals, and toxic chemicals.


Asunto(s)
Arthrobacter/crecimiento & desarrollo , Arthrobacter/genética , Genoma Bacteriano/genética , Análisis de Secuencia de ADN , Microbiología del Suelo , Arthrobacter/química , Arthrobacter/metabolismo , Atrazina/metabolismo , Biodegradación Ambiental , Cromosomas Bacterianos/química , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/fisiología , Elementos Transponibles de ADN/genética , ADN Circular/química , Metabolismo Energético/genética , Datos de Secuencia Molecular , Filogenia , Plásmidos/genética , Secuencias Repetitivas de Ácidos Nucleicos
17.
J Bacteriol ; 188(19): 6841-50, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16980487

RESUMEN

The dimorphic prosthecate bacteria (DPB) are alpha-proteobacteria that reproduce in an asymmetric manner rather than by binary fission and are of interest as simple models of development. Prior to this work, the only member of this group for which genome sequence was available was the model freshwater organism Caulobacter crescentus. Here we describe the genome sequence of Hyphomonas neptunium, a marine member of the DPB that differs from C. crescentus in that H. neptunium uses its stalk as a reproductive structure. Genome analysis indicates that this organism shares more genes with C. crescentus than it does with Silicibacter pomeroyi (a closer relative according to 16S rRNA phylogeny), that it relies upon a heterotrophic strategy utilizing a wide range of substrates, that its cell cycle is likely to be regulated in a similar manner to that of C. crescentus, and that the outer membrane complements of H. neptunium and C. crescentus are remarkably similar. H. neptunium swarmer cells are highly motile via a single polar flagellum. With the exception of cheY and cheR, genes required for chemotaxis were absent in the H. neptunium genome. Consistent with this observation, H. neptunium swarmer cells did not respond to any chemotactic stimuli that were tested, which suggests that H. neptunium motility is a random dispersal mechanism for swarmer cells rather than a stimulus-controlled navigation system for locating specific environments. In addition to providing insights into bacterial development, the H. neptunium genome will provide an important resource for the study of other interesting biological processes including chromosome segregation, polar growth, and cell aging.


Asunto(s)
Alphaproteobacteria/genética , Caulobacter crescentus/genética , Genoma Bacteriano , Alphaproteobacteria/citología , Alphaproteobacteria/fisiología , Proteínas de la Membrana Bacteriana Externa/genética , Caulobacter crescentus/citología , Caulobacter crescentus/fisiología , Ciclo Celular/genética , Quimiotaxis/genética , Quimiotaxis/fisiología , ADN Bacteriano/química , ADN Bacteriano/genética , Flagelos/fisiología , Viabilidad Microbiana , Datos de Secuencia Molecular , Movimiento , Análisis de Secuencia de ADN , Homología de Secuencia , Transducción de Señal
18.
Genome Res ; 16(8): 1031-40, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16825665

RESUMEN

Clostridium perfringens is a Gram-positive, anaerobic spore-forming bacterium commonly found in soil, sediments, and the human gastrointestinal tract. C. perfringens is responsible for a wide spectrum of disease, including food poisoning, gas gangrene (clostridial myonecrosis), enteritis necroticans, and non-foodborne gastrointestinal infections. The complete genome sequences of Clostridium perfringens strain ATCC 13124, a gas gangrene isolate and the species type strain, and the enterotoxin-producing food poisoning strain SM101, were determined and compared with the published C. perfringens strain 13 genome. Comparison of the three genomes revealed considerable genomic diversity with >300 unique "genomic islands" identified, with the majority of these islands unusually clustered on one replichore. PCR-based analysis indicated that the large genomic islands are widely variable across a large collection of C. perfringens strains. These islands encode genes that correlate to differences in virulence and phenotypic characteristics of these strains. Significant differences between the strains include numerous novel mobile elements and genes encoding metabolic capabilities, strain-specific extracellular polysaccharide capsule, sporulation factors, toxins, and other secreted enzymes, providing substantial insight into this medically important bacterial pathogen.


Asunto(s)
Clostridium perfringens/genética , Genoma Bacteriano , Toxinas Bacterianas , Secuencia de Bases , ADN Bacteriano , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa
19.
Proc Natl Acad Sci U S A ; 102(39): 13950-5, 2005 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-16172379

RESUMEN

The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.


Asunto(s)
Genoma Bacteriano , Streptococcus agalactiae/clasificación , Streptococcus agalactiae/genética , Secuencia de Aminoácidos , Cápsulas Bacterianas/genética , Secuencia de Bases , Expresión Génica , Genes Bacterianos , Variación Genética , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Streptococcus agalactiae/patogenicidad , Virulencia/genética
20.
Proc Natl Acad Sci U S A ; 101(39): 14246-51, 2004 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-15377793

RESUMEN

The complete genome sequence of Burkholderia mallei ATCC 23344 provides insight into this highly infectious bacterium's pathogenicity and evolutionary history. B. mallei, the etiologic agent of glanders, has come under renewed scientific investigation as a result of recent concerns about its past and potential future use as a biological weapon. Genome analysis identified a number of putative virulence factors whose function was supported by comparative genome hybridization and expression profiling of the bacterium in hamster liver in vivo. The genome contains numerous insertion sequence elements that have mediated extensive deletions and rearrangements of the genome relative to Burkholderia pseudomallei. The genome also contains a vast number (>12,000) of simple sequence repeats. Variation in simple sequence repeats in key genes can provide a mechanism for generating antigenic variation that may account for the mammalian host's inability to mount a durable adaptive immune response to a B. mallei infection.


Asunto(s)
Burkholderia mallei/genética , Genoma Bacteriano , Animales , Composición de Base/genética , Secuencia de Bases , Burkholderia mallei/patogenicidad , Cromosomas Bacterianos/genética , Cricetinae , Muermo/microbiología , Hígado/metabolismo , Mesocricetus , Datos de Secuencia Molecular , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Lectura Abierta/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA