Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
BMC Genomics ; 25(1): 187, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38365587

RESUMEN

BACKGROUND: Whole exome sequencing (WES) and whole genome sequencing (WGS) have become standard methods in human clinical diagnostics as well as in population genomics (POPGEN). Blood-derived genomic DNA (gDNA) is routinely used in the clinical environment. Conversely, many POPGEN studies and commercial tests benefit from easy saliva sampling. Here, we evaluated the quality of variant call sets and the level of genotype concordance of single nucleotide variants (SNVs) and small insertions and deletions (indels) for WES and WGS using paired blood- and saliva-derived gDNA isolates employing genomic reference-based validated protocols. METHODS: The genomic reference standard Coriell NA12878 was repeatedly analyzed using optimized WES and WGS protocols, and data calls were compared with the truth dataset published by the Genome in a Bottle Consortium. gDNA was extracted from the paired blood and saliva samples of 10 participants and processed using the same protocols. A comparison of paired blood-saliva call sets was performed in the context of WGS and WES genomic reference-based technical validation results. RESULTS: The quality pattern of called variants obtained from genomic-reference-based technical replicates correlates with data calls of paired blood-saliva-derived samples in all levels of tested examinations despite a higher rate of non-human contamination found in the saliva samples. The F1 score of 10 blood-to-saliva-derived comparisons ranged between 0.8030-0.9998 for SNVs and between 0.8883-0.9991 for small-indels in the case of the WGS protocol, and between 0.8643-0.999 for SNVs and between 0.7781-1.000 for small-indels in the case of the WES protocol. CONCLUSION: Saliva may be considered an equivalent material to blood for genetic analysis for both WGS and WES under strict protocol conditions. The accuracy of sequencing metrics and variant-detection accuracy is not affected by choosing saliva as the gDNA source instead of blood but much more significantly by the genomic context, variant types, and the sequencing technology used.


Asunto(s)
Metagenómica , Saliva , Humanos , Secuenciación del Exoma , Exoma , Genoma Humano , Secuenciación Completa del Genoma , Genómica , ADN/genética
2.
J Integr Bioinform ; 20(3)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37602733

RESUMEN

With the rapid growth of massively parallel sequencing technologies, still more laboratories are utilising sequenced DNA fragments for genomic analyses. Interpretation of sequencing data is, however, strongly dependent on bioinformatics processing, which is often too demanding for clinicians and researchers without a computational background. Another problem represents the reproducibility of computational analyses across separated computational centres with inconsistent versions of installed libraries and bioinformatics tools. We propose an easily extensible set of computational pipelines, called SnakeLines, for processing sequencing reads; including mapping, assembly, variant calling, viral identification, transcriptomics, and metagenomics analysis. Individual steps of an analysis, along with methods and their parameters can be readily modified in a single configuration file. Provided pipelines are embedded in virtual environments that ensure isolation of required resources from the host operating system, rapid deployment, and reproducibility of analysis across different Unix-based platforms. SnakeLines is a powerful framework for the automation of bioinformatics analyses, with emphasis on a simple set-up, modifications, extensibility, and reproducibility. The framework is already routinely used in various research projects and their applications, especially in the Slovak national surveillance of SARS-CoV-2.


Asunto(s)
Genómica , Programas Informáticos , Reproducibilidad de los Resultados , Genómica/métodos , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
Sci Rep ; 13(1): 10531, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386017

RESUMEN

Clinical interpretation of copy number variants (CNVs) is a complex process that requires skilled clinical professionals. General recommendations have been recently released to guide the CNV interpretation based on predefined criteria to uniform the decision process. Several semiautomatic computational methods have been proposed to recommend appropriate choices, relieving clinicians of tedious searching in vast genomic databases. We have developed and evaluated such a tool called MarCNV and tested it on CNV records collected from the ClinVar database. Alternatively, the emerging machine learning-based tools, such as the recently published ISV (Interpretation of Structural Variants), showed promising ways of even fully automated predictions using broader characterization of affected genomic elements. Such tools utilize features additional to ACMG criteria, thus providing supporting evidence and the potential to improve CNV classification. Since both approaches contribute to evaluation of CNVs clinical impact, we propose a combined solution in the form of a decision support tool based on automated ACMG guidelines (MarCNV) supplemented by a machine learning-based pathogenicity prediction (ISV) for the classification of CNVs. We provide evidence that such a combined approach is able to reduce the number of uncertain classifications and reveal potentially incorrect classifications using automated guidelines. CNV interpretation using MarCNV, ISV, and combined approach is available for non-commercial use at https://predict.genovisio.com/ .


Asunto(s)
Variaciones en el Número de Copia de ADN , Suplementos Dietéticos , Bases de Datos Factuales , Aprendizaje Automático , Incertidumbre
4.
Bioinformatics ; 39(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37326967

RESUMEN

MOTIVATION: Short tandem repeats (STRs) are regions of a genome containing many consecutive copies of the same short motif, possibly with small variations. Analysis of STRs has many clinical uses but is limited by technology mainly due to STRs surpassing the used read length. Nanopore sequencing, as one of long-read sequencing technologies, produces very long reads, thus offering more possibilities to study and analyze STRs. Basecalling of nanopore reads is however particularly unreliable in repeating regions, and therefore direct analysis from raw nanopore data is required. RESULTS: Here, we present WarpSTR, a novel method for characterizing both simple and complex tandem repeats directly from raw nanopore signals using a finite-state automaton and a search algorithm analogous to dynamic time warping. By applying this approach to determine the lengths of 241 STRs, we demonstrate that our approach decreases the mean absolute error of the STR length estimate compared to basecalling and STRique. AVAILABILITY AND IMPLEMENTATION: WarpSTR is freely available at https://github.com/fmfi-compbio/warpstr.


Asunto(s)
Nanoporos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genoma , Algoritmos , Repeticiones de Microsatélite , Análisis de Secuencia de ADN
5.
EPMA J ; 14(1): 143-165, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36866160

RESUMEN

A form of genomic alteration called microsatellite instability (MSI) occurs in a class of tandem repeats (TRs) called microsatellites (MSs) or short tandem repeats (STRs) due to the failure of a post-replicative DNA mismatch repair (MMR) system. Traditionally, the strategies for determining MSI events have been low-throughput procedures that typically require assessment of tumours as well as healthy samples. On the other hand, recent large-scale pan-tumour studies have consistently highlighted the potential of massively parallel sequencing (MPS) on the MSI scale. As a result of recent innovations, minimally invasive methods show a high potential to be integrated into the clinical routine and delivery of adapted medical care to all patients. Along with advances in sequencing technologies and their ever-increasing cost-effectiveness, they may bring about a new era of Predictive, Preventive and Personalised Medicine (3PM). In this paper, we offered a comprehensive analysis of high-throughput strategies and computational tools for the calling and assessment of MSI events, including whole-genome, whole-exome and targeted sequencing approaches. We also discussed in detail the detection of MSI status by current MPS blood-based methods and we hypothesised how they may contribute to the shift from conventional medicine to predictive diagnosis, targeted prevention and personalised medical services. Increasing the efficacy of patient stratification based on MSI status is crucial for tailored decision-making. Contextually, this paper highlights drawbacks both at the technical level and those embedded deeper in cellular/molecular processes and future applications in routine clinical testing.

6.
Bratisl Lek Listy ; 124(5): 351-355, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36876364

RESUMEN

BACKGROUND: Familial combined hypolipidaemia is a condition characterised by very low concentrations of circulating very-low-density lipoprotein (VLDL), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL). It is thought that low LDL/combined hypolipidaemia can protect from cardiovascular disease (CVD), but this is not what we found in a case we present. OBJECTIVE: We report on a 57-years-old male patient with combined hypolipidaemia who presented with premature peripheral vascular disease. We investigated also his two sons, 32- and 27-years-old, who manifested a tendency to low lipid levels. METHODS AND RESULTS: We used Illumina exome analysis in all three individuals and in all of them we could exclude the major effect of the variants within the genes most frequently mutated in hypolipidaemia, including recently reported LIPC gene variant. Instead, in all three individuals we identified a novel ABCA1 variant, possibly responsible for the decreased HDL levels. The proband and one of his sons also share the splicing APOC3 variant rs138326449, known to be associated with decreased TG levels. CONCLUSION: The heterogeneous nature and the risk of atherosclerosis in combined hypolipidaemia seems to be variable, based on an interplay between low HDL and LDL levels, and it depends on the combination of variants that cause it (Tab. 2, Ref. 38).


Asunto(s)
Proteínas Portadoras , Enfermedades Vasculares Periféricas , Humanos , Masculino , Persona de Mediana Edad , Apolipoproteína C-III/genética , Transportador 1 de Casete de Unión a ATP , HDL-Colesterol , LDL-Colesterol/metabolismo , Adulto
7.
BMC Genomics ; 24(1): 12, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627554

RESUMEN

BACKGROUND: COVID-19 caused by the SARS-CoV-2 infection may result in various disease symptoms and severity, ranging from asymptomatic, through mildly symptomatic, up to very severe and even fatal cases. Although environmental, clinical, and social factors play important roles in both susceptibility to the SARS-CoV-2 infection and progress of COVID-19 disease, it is becoming evident that both pathogen and host genetic factors are important too. In this study, we report findings from whole-exome sequencing (WES) of 27 individuals who died due to COVID-19, especially focusing on frequencies of DNA variants in genes previously associated with the SARS-CoV-2 infection and the severity of COVID-19. RESULTS: We selected the risk DNA variants/alleles or target genes using four different approaches: 1) aggregated GWAS results from the GWAS Catalog; 2) selected publications from PubMed; 3) the aggregated results of the Host Genetics Initiative database; and 4) a commercial DNA variant annotation/interpretation tool providing its own knowledgebase. We divided these variants/genes into those reported to influence the susceptibility to the SARS-CoV-2 infection and those influencing the severity of COVID-19. Based on the above, we compared the frequencies of alleles found in the fatal COVID-19 cases to the frequencies identified in two population control datasets (non-Finnish European population from the gnomAD database and genomic frequencies specific for the Slovak population from our own database). When compared to both control population datasets, our analyses indicated a trend of higher frequencies of severe COVID-19 associated risk alleles among fatal COVID-19 cases. This trend reached statistical significance specifically when using the HGI-derived variant list. We also analysed other approaches to WES data evaluation, demonstrating its utility as well as limitations. CONCLUSIONS: Although our results proved the likely involvement of host genetic factors pointed out by previous studies looking into severity of COVID-19 disease, careful considerations of the molecular-testing strategies and the evaluated genomic positions may have a strong impact on the utility of genomic testing.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Secuenciación del Exoma , Alelos , ADN
8.
Bratisl Lek Listy ; 123(8): 568-572, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35852507

RESUMEN

BACKGROUND: Pontocerebellar hypoplasia type 1 (PCH1) is characterized by a central and peripheral motor dysfunction associated with anterior horn cell degeneration, similar to spinal muscular atrophy (SMA). OBJECTIVES: We analysed three probands (later discovered to be siblings) suspected to have severe SMA, however, not confirmed by genetic test. METHODS: Clinical-exome analysis (Illumina) was performed to identify causative variants, followed by Sanger sequencing confirmation in probands and other 10 family members. RESULTS: Homozygous pathogenic variant c.92G>C (p.(Gly31Ala)) in the Exosome Component 3 (EXOSC3) gene was found in all 3 probands, thus confirming the diagnosis of a severe form of PCH1B. The parents and six siblings were carriers, while one sibling was homozygous for a reference allele. This variant is frequent in the Czech Roma population, where it is considered a founder mutation. Haplotype analysis in this largest reported PCH1B family showed that our patients inherited from their father (of Roma origin) a haplotype identical to that found in the Czech Roma population, thus indicating these alleles have a common origin. CONCLUSION: This EXOSC3 variant is rare among the general population but most likely frequent also among Roma people in Slovakia. PCH1B should be considered for a differential diagnosis in infants manifesting SMA-like phenotype, especially if of Roma origin (Tab. 1, Fig. 1, Ref. 22). Text in PDF www.elis.sk Keywords: pontocerebellar hypoplasia, PCH1B, EXOSC3, SMA plus syndromes, pathogenic sequence variant.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma , Proteínas de Unión al ARN , Enfermedades Cerebelosas , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Humanos , Mutación , Proteínas de Unión al ARN/genética , Eslovaquia
9.
Biomed J ; 44(5): 548-559, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34649833

RESUMEN

Copy number variants (CNVs) were the subject of extensive research in the past years. They are common features of the human genome that play an important role in evolution, contribute to population diversity, development of certain diseases, and influence host-microbiome interactions. CNVs have found application in the molecular diagnosis of many diseases and in non-invasive prenatal care, but their full potential is only emerging. CNVs are expected to have a tremendous impact on screening, diagnosis, prognosis, and monitoring of several disorders, including cancer and cardiovascular disease. Here, we comprehensively review basic definitions of the term CNV, outline mechanisms and factors involved in CNV formation, and discuss their evolutionary and pathological aspects. We suggest a need for better defined distinguishing criteria and boundaries between known types of CNVs.


Asunto(s)
Variaciones en el Número de Copia de ADN , Variaciones en el Número de Copia de ADN/genética , Femenino , Humanos , Embarazo
10.
Oncol Lett ; 22(5): 779, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34594420

RESUMEN

In our previous work, genomic data generated through non-invasive prenatal testing (NIPT) based on low-coverage massively parallel whole-genome sequencing of total plasma DNA of pregnant women in Slovakia was described as a valuable source of population specific data. In the present study, these data were used to determine the population allele frequency of common risk variants located in genes associated with colorectal cancer (CRC) and Lynch syndrome (LS). Allele frequencies of identified variants were compared with six world populations to detect significant differences between populations. Finally, variants were interpreted, functional consequences were searched for and clinical significance of variants was investigated using publicly available databases. Although the present study did not identify any pathogenic variants associated with CRC or LS in the Slovak population using NIPT data, significant differences were observed in the allelic frequency of risk CRC variants previously reported in genome-wide association studies and common variants located in genes associated with LS. As Slovakia is one of the leading countries with the highest incidence of CRC among male patients in the world, there is a need for studies dedicated to investigating the cause of such a high incidence of CRC in Slovakia. The present study also assumed that extensive cross-country data aggregation of NIPT results would represent an unprecedented source of information concerning human genome variation in cancer research.

11.
BMC Genomics ; 22(1): 712, 2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600465

RESUMEN

BACKGROUND: The current and future applications of genomic data may raise ethical and privacy concerns. Processing and storing of this data introduce a risk of abuse by potential offenders since the human genome contains sensitive personal information. For this reason, we have developed a privacy-preserving method, named Varlock providing secure storage of sequenced genomic data. We used a public set of population allele frequencies to mask the personal alleles detected in genomic reads. Each personal allele described by the public set is masked by a randomly selected population allele with respect to its frequency. Masked alleles are preserved in an encrypted confidential file that can be shared in whole or in part using public-key cryptography. RESULTS: Our method masked the personal variants and introduced new variants detected in a personal masked genome. Alternative alleles with lower population frequency were masked and introduced more often. We performed a joint PCA analysis of personal and masked VCFs, showing that the VCFs between the two groups cannot be trivially mapped. Moreover, the method is reversible and personal alleles in specific genomic regions can be unmasked on demand. CONCLUSION: Our method masks personal alleles within genomic reads while preserving valuable non-sensitive properties of sequenced DNA fragments for further research. Personal alleles in the desired genomic regions may be restored and shared with patients, clinics, and researchers. We suggest that the method can provide an additional security layer for storing and sharing of the raw aligned reads.


Asunto(s)
Genómica , Privacidad , Alelos , Frecuencia de los Genes , Genoma Humano , Humanos
12.
J Clin Med ; 10(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34501382

RESUMEN

Myotonic dystrophy type 2 (DM2) is caused by expansion of a (CCTG)n repeat in the cellular retroviral nucleic acid-binding protein (CNBP) gene. The sequence of the repeat is most commonly interrupted and is stably inherited in the general population. Although expanded alleles, premutation range and, in rare cases, also non-disease associated alleles containing uninterrupted CCTG tracts have been described, the threshold between these categories is poorly characterised. Here, we describe four families with members reporting neuromuscular complaints, in whom we identified altogether nine ambiguous CNBP alleles containing uninterrupted CCTG repeats in the range between 32 and 42 repeats. While these grey-zone alleles are most likely not pathogenic themselves, since other pathogenic mutations were identified and particular family structures did not support their pathogenic role, they were found to be unstable during intergenerational transmission. On the other hand, there was no observable general microsatellite instability in the genome of the carriers of these alleles. Our results further refine the division of CNBP CCTG repeat alleles into two major groups, i.e., interrupted and uninterrupted alleles. Both interrupted and uninterrupted alleles with up to approximately 30 CCTG repeats were shown to be generally stable during intergenerational transmission, while intergenerational as well as somatic instability seems to gradually increase in uninterrupted alleles with tract length growing above this threshold.

13.
Medicine (Baltimore) ; 100(22): e26136, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34087865

RESUMEN

RATIONALE: Periventricular nodular heterotopia-7 (PVNH7) is a neurodevelopmental disorder associated with improper neuronal migration during neurogenesis in cortex development caused by pathogenic variants in the NEDD4L gene. PATIENT CONCERNS: We report the case of a polystigmatized 2-year-old boy having significant symptomatologic overlap with PVNH7, such as delayed psychomotor and mental development, seizures and infantile spasms, periventricular nodular heterotopia, polymicrogyria, cleft palate, 2 to 3 toe syndactyly, hypotonia, microretrognathia, strabismus, and absent speech and walking. The patient showed also distinct symptoms falling outside PVNH7 symptomatology, also present in the proband's older brother, such as blue sclerae, hydronephrosis, transversal palmar crease (found also in their father), and bilateral talipes equinovarus. In addition, the patient suffered from many other symptoms. DIAGNOSES: The boy, his brother and their parents were subjected to whole-exome sequencing. Because of uncertainties in symptomatology and inheritance pattern, the top-down approach was hard to apply. Using the bottom-up approach, we identified a known pathogenic variant, NM_001144967.2(NEDD4L):c.2677G>A:p.Glu893Lys, in the proband's genome that absented in any other analyzed family member, suggesting its de novo origin. INTERVENTIONS AND OUTCOMES: The patient was treated with Convulex 300 mg/mL for the successful seizure control and Euthyrox 25mg for the treatment of thyroid malfunction. He also took various supplements for the metabolism support and digestion regulation. Moreover, the patient underwent the corrective surgeries of cleft palate and talipes equinovarus. LESSONS: We successfully identified the causative mutation NM_001144967.2(NEDD4L):c.2677G>A:p.Glu893Lys explaining symptoms overlapping those reported for PVNH7. Symptoms shared with the brother were not explained by this variant, since he was not a carrier of the pathogenic NEDD4L variant. These are most likely not extended phenotypes of PVNH7, rather an independent clinical entity caused by a yet unidentified genetic factor in the family, highlighting thus the importance of thorough evaluation of symptomatology and genomic findings in affected and unaffected family members, when such data are available.


Asunto(s)
Ubiquitina-Proteína Ligasas Nedd4/genética , Heterotopia Nodular Periventricular/genética , Heterotopia Nodular Periventricular/fisiopatología , Anticonvulsivantes/uso terapéutico , Preescolar , Suplementos Dietéticos , Humanos , Masculino , Heterotopia Nodular Periventricular/terapia , Tiroxina/uso terapéutico
14.
Cells ; 10(1)2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418977

RESUMEN

Circulating extracellular DNA (ecDNA) is known to worsen the outcome of many diseases. ecDNA released from neutrophils during infection or inflammation is present in the form of neutrophil extracellular traps (NETs). It has been shown that higher ecDNA concentration occurs in a number of inflammatory diseases including inflammatory bowel disease (IBD). Enzymes such as peptidyl arginine deiminases (PADs) are crucial for NET formation. We sought to describe the dynamics of ecDNA concentrations and fragmentation, along with NETosis during a mouse model of chemically induced colitis. Plasma ecDNA concentration was highest on day seven of dextran sulfate sodium (DSS) intake and the increase was time-dependent. This increase correlated with the percentage of cells undergoing NETosis and other markers of disease activity. Relative proportion of nuclear ecDNA increased towards more severe colitis; however, absolute amount decreased. In colon explant medium, the highest concentration of ecDNA was on day three of DSS consumption. Early administration of PAD4 inhibitors did not alleviate disease activity, but lowered the ecDNA concentration. These results uncover the biological characteristics of ecDNA in IBD and support the role of ecDNA in intestinal inflammation. The therapeutic intervention aimed at NETs and/or nuclear ecDNA has yet to be fully investigated.


Asunto(s)
Colitis/inducido químicamente , ADN/metabolismo , Espacio Extracelular/metabolismo , Inflamación/patología , Intestinos/patología , Animales , Biomarcadores/metabolismo , Colitis/sangre , Colitis/patología , ADN/sangre , ADN Mitocondrial/sangre , Desoxirribonucleasas/metabolismo , Sulfato de Dextran , Endoscopía , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/metabolismo , Inflamación/sangre , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Intestinos/efectos de los fármacos , Ratones Endogámicos C57BL , Ornitina/análogos & derivados , Ornitina/farmacología , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Índice de Severidad de la Enfermedad , Estreptonigrina/farmacología
15.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207777

RESUMEN

Analyzes of cell-free nucleic acids (cfNAs) have shown huge potential in many biomedical applications, gradually entering several fields of research and everyday clinical care. Many biological properties of cfNAs can be informative to gain deeper insights into the function of the organism, such as their different types (DNA, RNAs) and subtypes (gDNA, mtDNA, bacterial DNA, miRNAs, etc.), forms (naked or vesicle bound NAs), fragmentation profiles, sequence composition, epigenetic modifications, and many others. On the other hand, the workflows of their analyzes comprise many important steps, from sample collection, storage and transportation, through extraction and laboratory analysis, up to bioinformatic analyzes and statistical evaluations, where each of these steps has the potential to affect the outcome and informational value of the performed analyzes. There are, however, no universal or standard protocols on how to exactly proceed when analyzing different cfNAs for different applications, at least according to our best knowledge. We decided therefore to prepare an overview of the available literature and products commercialized for cfNAs processing, in an attempt to summarize the benefits and limitations of the currently available approaches, devices, consumables, and protocols, together with various factors influencing the workflow, its processes, and outcomes.


Asunto(s)
Ácidos Nucleicos Libres de Células/análisis , ADN Bacteriano/análisis , ADN Mitocondrial/análisis , ARN Bacteriano/análisis , ARN Mitocondrial/análisis
16.
PLoS One ; 15(8): e0238245, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32845907

RESUMEN

To study the detection limits of chromosomal microaberrations in non-invasive prenatal testing with aim for five target microdeletion syndromes, including DiGeorge, Prader-Willi/Angelman, 1p36, Cri-Du-Chat, and Wolf-Hirschhorn syndromes. We used known cases of pathogenic deletions from ISCA database to specifically define regions critical for the target syndromes. Our approach to detect microdeletions, from whole genome sequencing data, is based on sample normalization and read counting for individual bins. We performed both an in-silico study using artificially created data sets and a laboratory test on mixed DNA samples, with known microdeletions, to assess the sensitivity of prediction for varying fetal fractions, deletion lengths, and sequencing read counts. The in-silico study showed sensitivity of 79.3% for 10% fetal fraction with 20M read count, which further increased to 98.4% if we searched only for deletions longer than 3Mb. The test on laboratory-prepared mixed samples was in agreement with in-silico results, while we were able to correctly detect 24 out of 29 control samples. Our results suggest that it is possible to incorporate microaberration detection into basic NIPT as part of the offered screening/diagnostics procedure, however, accuracy and reliability depends on several specific factors.


Asunto(s)
Mapeo Cromosómico/métodos , Límite de Detección , Pruebas Prenatales no Invasivas/métodos , Secuenciación Completa del Genoma/métodos , Ácidos Nucleicos Libres de Células/análisis , Deleción Cromosómica , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 1/genética , Síndrome del Maullido del Gato/diagnóstico , Síndrome del Maullido del Gato/genética , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Femenino , Humanos , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , Embarazo , Atención Prenatal , Síndrome de Wolf-Hirschhorn/diagnóstico , Síndrome de Wolf-Hirschhorn/genética
17.
Int J Mol Sci ; 20(18)2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31500242

RESUMEN

Copy number variants (CNVs) are an important type of human genome variation, which play a significant role in evolution contribute to population diversity and human genetic diseases. In recent years, next generation sequencing has become a valuable tool for clinical diagnostics and to provide sensitive and accurate approaches for detecting CNVs. In our previous work, we described a non-invasive prenatal test (NIPT) based on low-coverage massively parallel whole-genome sequencing of total plasma DNA for detection of CNV aberrations ≥600 kbp. We reanalyzed NIPT genomic data from 5018 patients to evaluate CNV aberrations in the Slovak population. Our analysis of autosomal chromosomes identified 225 maternal CNVs (47 deletions; 178 duplications) ranging from 600 to 7820 kbp. According to the ClinVar database, 137 CNVs (60.89%) were fully overlapping with previously annotated variants, 66 CNVs (29.33%) were in partial overlap, and 22 CNVs (9.78%) did not overlap with any previously described variant. Identified variants were further classified with the AnnotSV method. In summary, we identified 129 likely benign variants, 13 variants of uncertain significance, and 83 likely pathogenic variants. In this study, we use NIPT as a valuable source of population specific data. Our results suggest the utility of genomic data from commercial CNV analysis test as background for a population study.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación Completa del Genoma/métodos , Mapeo Cromosómico , ADN/sangre , Femenino , Humanos , Embarazo , Diagnóstico Prenatal , Duplicaciones Segmentarias en el Genoma , Eliminación de Secuencia , Eslovaquia
18.
Int J Mol Sci ; 20(16)2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31416246

RESUMEN

The reliability of non-invasive prenatal testing is highly dependent on accurate estimation of fetal fraction. Several methods have been proposed up to date, utilizing different attributes of analyzed genomic material, for example length and genomic location of sequenced DNA fragments. These two sources of information are relatively unrelated, but so far, there have been no published attempts to combine them to get an improved predictor. We collected 2454 single euploid male fetus samples from women undergoing NIPT testing. Fetal fractions were calculated using several proposed predictors and the state-of-the-art SeqFF method. Predictions were compared with the reference Y-based method. We demonstrate that prediction based on length of sequenced DNA fragments may achieve nearly the same precision as the state-of-the-art methods based on their genomic locations. We also show that combination of several sample attributes leads to a predictor that has superior prediction accuracy over any single approach. Finally, appropriate weighting of samples in the training process may achieve higher accuracy for samples with low fetal fraction and so allow more reliability for subsequent testing for genomic aberrations. We propose several improvements in fetal fraction estimation with a special focus on the samples most prone to wrong conclusion.


Asunto(s)
Fragmentación del ADN , Desarrollo Fetal/genética , Feto , Pruebas Genéticas , Diagnóstico Prenatal/métodos , Adulto , Composición de Base , Femenino , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Embarazo , Pronóstico , Reproducibilidad de los Resultados
19.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357438

RESUMEN

Cell-free nucleic acids (cfNAs) are defined as any nucleic acids that are present outside the cell. They represent valuable biomarkers in various diagnostic protocols such as prenatal diagnostics, the detection of cancer, and cardiovascular or autoimmune diseases. However, in the current literature, little is known about their implication in inflammatory bowel disease (IBD). IBD is a group of multifactorial, autoimmune, and debilitating diseases with increasing incidence worldwide. Despite extensive research, their etiology and exact pathogenesis is still unclear. Since cfNAs were observed in other autoimmune diseases and appear to be relevant in inflammatory processes, their role in the pathogenesis of IBD has also been suggested. This review provides a summary of knowledge from the available literature about cfDNA and cfRNA and the structures involving them such as exosomes and neutrophil extracellular traps and their association with IBD. Current studies showed the promise of cfNAs in the management of IBD not only as biomarkers distinguishing patients from healthy people and differentiating active from inactive disease state, but also as a potential therapeutic target. However, the detailed biological characteristics of cfNAs need to be fully elucidated in future experimental and clinical studies.


Asunto(s)
Ácidos Nucleicos Libres de Células , Susceptibilidad a Enfermedades , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Animales , Biomarcadores , ADN Mitocondrial , Manejo de la Enfermedad , Exosomas , Trampas Extracelulares , Humanos , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/terapia , Terapia Molecular Dirigida , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/patología , ARN Largo no Codificante/genética
20.
J Biotechnol ; 299: 72-78, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31054297

RESUMEN

Low-coverage massively parallel genome sequencing for non-invasive prenatal testing (NIPT) of common aneuploidies is one of the most rapidly adopted and relatively low-cost DNA tests. Since aggregation of reads from a large number of samples allows overcoming the problems of extremely low coverage of individual samples, we describe the possible re-use of the data generated during NIPT testing for genome scale population specific frequency determination of small DNA variants, requiring no additional costs except of those for the NIPT test itself. We applied our method to a data set comprising of 1501 original NIPT test results and evaluated the findings on different levels, from in silico population frequency comparisons up to wet lab validation analyses using a gold-standard method based on Sanger sequencing. The revealed high reliability of variant calling and allelic frequency determinations suggest that these NIPT data could serve as valuable alternatives to large scale population studies even for smaller countries around the world.


Asunto(s)
Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Diagnóstico Prenatal/métodos , Biología Computacional/economía , Femenino , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Humanos , Embarazo , Diagnóstico Prenatal/economía , Reproducibilidad de los Resultados , Eslovaquia , Secuenciación Completa del Genoma/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...