Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 33
1.
JACC Clin Electrophysiol ; 10(5): 829-842, 2024 May.
Article En | MEDLINE | ID: mdl-38430092

BACKGROUND: Sudden unexpected death in epilepsy (SUDEP) is a fatal complication experienced by otherwise healthy epilepsy patients. Dravet syndrome (DS) is an inherited epileptic disorder resulting from loss of function of the voltage-gated sodium channel, NaV 1.1, and is associated with particularly high SUDEP risk. Evidence is mounting that NaVs abundant in the brain also occur in the heart, suggesting that the very molecular mechanisms underlying epilepsy could also precipitate cardiac arrhythmias and sudden death. Despite marked reduction of NaV 1.1 functional expression in DS, pathogenic late sodium current (INa,L) is paradoxically increased in DS hearts. However, the mechanisms by which DS directly impacts the heart to promote sudden death remain unclear. OBJECTIVES: In this study, the authors sought to provide evidence implicating remodeling of Na+ - and Ca2+ -handling machinery, including NaV 1.6 and Na+/Ca2+exchanger (NCX) within transverse (T)-tubules in DS-associated arrhythmias. METHODS: The authors undertook scanning ion conductance microscopy (SICM)-guided patch clamp, super-resolution microscopy, confocal Ca2+ imaging, and in vivo electrocardiography studies in Scn1a haploinsufficient murine model of DS. RESULTS: DS promotes INa,L in T-tubular nanodomains, but not in other subcellular regions. Consistent with increased NaV activity in these regions, super-resolution microscopy revealed increased NaV 1.6 density near Ca2+release channels, the ryanodine receptors (RyR2) and NCX in DS relative to WT hearts. The resulting INa,L in these regions promoted aberrant Ca2+ release, leading to ventricular arrhythmias in vivo. Cardiac-specific deletion of NaV 1.6 protects adult DS mice from increased T-tubular late NaV activity and the resulting arrhythmias, as well as sudden death. CONCLUSIONS: These data demonstrate that NaV 1.6 undergoes remodeling within T-tubules of adult DS hearts serving as a substrate for Ca2+ -mediated cardiac arrhythmias and may be a druggable target for the prevention of SUDEP in adult DS subjects.


Epilepsies, Myoclonic , NAV1.6 Voltage-Gated Sodium Channel , Animals , Mice , Epilepsies, Myoclonic/genetics , NAV1.6 Voltage-Gated Sodium Channel/genetics , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Sudden Unexpected Death in Epilepsy , Arrhythmias, Cardiac/genetics , Humans , Male , Calcium/metabolism , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism , Female , Myocytes, Cardiac/metabolism , Mice, Knockout
2.
JACC Clin Electrophysiol ; 9(12): 2425-2443, 2023 12.
Article En | MEDLINE | ID: mdl-37498248

BACKGROUND: Propagation of action potentials through the heart coordinates the heartbeat. Thus, intercalated discs, specialized cell-cell contact sites that provide electrical and mechanical coupling between cardiomyocytes, are an important target for study. Impaired propagation leads to arrhythmias in many pathologies, where intercalated disc remodeling is a common finding, hence the importance and urgency of understanding propagation dependence on intercalated disc structure. Conventional modeling approaches cannot predict changes in propagation elicited by perturbations that alter intercalated disc ultrastructure or molecular organization, because of lack of quantitative structural data at subcellular through nano scales. OBJECTIVES: This study sought to quantify intercalated disc structure at these spatial scales in the healthy adult mouse heart and relate them to chamber-specific properties of propagation as a precursor to understanding the effects of pathological intercalated disc remodeling. METHODS: Using super-resolution light microscopy, electron microscopy, and computational image analysis, we provide here the first ever systematic, multiscale quantification of intercalated disc ultrastructure and molecular organization. RESULTS: By incorporating these data into a rule-based model of cardiac tissue with realistic intercalated disc structure, and comparing model predictions of electrical propagation with experimental measures of conduction velocity, we reveal that atrial intercalated discs can support faster conduction than their ventricular counterparts, which is normally masked by interchamber differences in myocyte geometry. Further, we identify key ultrastructural and molecular organization features underpinning the ability of atrial intercalated discs to support faster conduction. CONCLUSIONS: These data provide the first stepping stone to elucidating chamber-specific effects of pathological intercalated disc remodeling, as occurs in many arrhythmic diseases.


Myocardium , Myocytes, Cardiac , Mice , Animals , Heart Rate , Myocytes, Cardiac/physiology , Arrhythmias, Cardiac
3.
bioRxiv ; 2023 Mar 24.
Article En | MEDLINE | ID: mdl-36824727

During each heartbeat, the propagation of action potentials through the heart coordinates the contraction of billions of individual cardiomyocytes and is thus, a critical life process. Unsurprisingly, intercalated discs, which are cell-cell contact sites specialized to provide electrical and mechanical coupling between adjacent cardiomyocytes, have been the focus of much investigation. Slowed or disrupted propagation leads to potentially life-threatening arrhythmias in a wide range of pathologies, where intercalated disc remodeling is a common finding. Hence, the importance and urgency of understanding intercalated disc structure and its influence on action potential propagation. Surprisingly, however, conventional modeling approaches cannot predict changes in propagation elicited by perturbations that alter intercalated disc ultrastructure or molecular organization, owing to lack of quantitative structural data at subcellular through nano scales. In order to address this critical gap in knowledge, we sought to quantify intercalated disc structure at these finer spatial scales in the healthy adult mouse heart and relate them to function in a chamber-specific manner as a precursor to understanding the impacts of pathological intercalated disc remodeling. Using super-resolution light microscopy, electron microscopy, and computational image analysis, we provide here the first ever systematic, multiscale quantification of intercalated disc ultrastructure and molecular organization. By incorporating these data into a rule-based model of cardiac tissue with realistic intercalated disc structure, and comparing model predictions of electrical propagation with experimental measures of conduction velocity, we reveal that atrial intercalated discs can support faster conduction than their ventricular counterparts, which is normally masked by inter-chamber differences in myocyte geometry. Further, we identify key ultrastructural and molecular organization features underpinning the ability of atrial intercalated discs to support faster conduction. These data provide the first stepping stone to elucidating chamber-specific impacts of pathological intercalated disc remodeling, as occurs in many arrhythmic diseases.

4.
J Clin Invest ; 133(7)2023 04 03.
Article En | MEDLINE | ID: mdl-36821382

Calmodulin (CaM) plays critical roles in cardiomyocytes, regulating Na+ (NaV) and L-type Ca2+ channels (LTCCs). LTCC dysregulation by mutant CaMs has been implicated in action potential duration (APD) prolongation and arrhythmogenic long QT (LQT) syndrome. Intriguingly, D96V-CaM prolongs APD more than other LQT-associated CaMs despite inducing comparable levels of LTCC dysfunction, suggesting dysregulation of other depolarizing channels. Here, we provide evidence implicating NaV dysregulation within transverse (T) tubules in D96V-CaM-associated arrhythmias. D96V-CaM induced a proarrhythmic late Na+ current (INa) by impairing inactivation of NaV1.6, but not the predominant cardiac NaV isoform NaV1.5. We investigated arrhythmia mechanisms using mice with cardiac-specific expression of D96V-CaM (cD96V). Super-resolution microscopy revealed close proximity of NaV1.6 and RyR2 within T-tubules. NaV1.6 density within these regions increased in cD96V relative to WT mice. Consistent with NaV1.6 dysregulation by D96V-CaM in these regions, we observed increased late NaV activity in T-tubules. The resulting late INa promoted aberrant Ca2+ release and prolonged APD in myocytes, leading to LQT and ventricular tachycardia in vivo. Cardiac-specific NaV1.6 KO protected cD96V mice from increased T-tubular late NaV activity and its arrhythmogenic consequences. In summary, we demonstrate that D96V-CaM promoted arrhythmias by dysregulating LTCCs and NaV1.6 within T-tubules and thereby facilitating aberrant Ca2+ release.


Calmodulin , Long QT Syndrome , Mice , Animals , Calmodulin/genetics , Calmodulin/metabolism , Calcium/metabolism , Sodium/metabolism , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Long QT Syndrome/genetics , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics
5.
Int J Mol Sci ; 23(15)2022 Aug 03.
Article En | MEDLINE | ID: mdl-35955741

Dofetilide is a rapid delayed rectifier potassium current inhibitor widely used to prevent the recurrence of atrial fibrillation and flutter. The clinical use of this drug is associated with increases in QTc interval, which predispose patients to ventricular cardiac arrhythmias. The mechanisms involved in the disposition of dofetilide, including its movement in and out of cardiomyocytes, remain unknown. Using a xenobiotic transporter screen, we identified MATE1 (SLC47A1) as a transporter of dofetilide and found that genetic knockout or pharmacological inhibition of MATE1 in mice was associated with enhanced retention of dofetilide in cardiomyocytes and increased QTc prolongation. The urinary excretion of dofetilide was also dependent on the MATE1 genotype, and we found that this transport mechanism provides a mechanistic basis for previously recorded drug-drug interactions of dofetilide with various contraindicated drugs, including bictegravir, cimetidine, ketoconazole, and verapamil. The translational significance of these observations was examined with a physiologically-based pharmacokinetic model that adequately predicted the drug-drug interaction liabilities in humans. These findings support the thesis that MATE1 serves a conserved cardioprotective role by restricting excessive cellular accumulation and warrant caution against the concurrent administration of potent MATE1 inhibitors and cardiotoxic substrates with a narrow therapeutic window.


Anti-Arrhythmia Agents , Atrial Fibrillation , Animals , Anti-Arrhythmia Agents/pharmacology , Humans , Mice , Phenethylamines/pharmacology , Sulfonamides/therapeutic use
6.
Ann Diagn Pathol ; 60: 151983, 2022 Oct.
Article En | MEDLINE | ID: mdl-35660807

Cardiac manifestations are common in severe COVID-19. This study compared the histologic, viral, and molecular findings in cardiac tissue in fatal COVID-19 (n = 11) and controls (n = 11). In situ hybridization (SARS-CoV2 RNA) and immunohistochemistry for viral proteins and the host response were quantified for the samples and compared with qRTPCR and Western blot data. Control hearts showed a high resident population of macrophages that had variable ACE2 expression. Cardiac ACE2 expression was 10× greater in the heart tissues of cases and controls with obesity or type II diabetes. Multifocal endothelial cell swelling and degeneration, perivascular edema plus microvascular thrombi were unique to the cases. SARS-CoV2 RNA and nucleocapsid protein were rarely detected in situ in any COVID-19 heart. However, in each case abundant SARS-CoV-2 spike protein was evident. Co-expression experiments showed that the spike protein localized mostly to the ACE2+ interstitial macrophages/pericytes that were activated as evidenced by increased IL6 and TNFα expression. Western blots confirmed the presence of the viral spike protein, but not the nucleocapsid protein, in the cardiac homogenates. The intercalated disc proteins connexin 43, the primary cardiac gap junction protein, and NaV1.5, the predominant cardiac sodium channel, each showed marked lateral migration in the myocytes in the cases, which would increase the risk of reentrant arrhythmias. It is concluded that the viral spike protein, endocytosed by macrophages/pericytes, can induce a myocarditis with the possibility of conduction dysfunction due to abnormal localization of key intercalated disc proteins.


COVID-19 , Diabetes Mellitus, Type 2 , Heart Diseases , Angiotensin-Converting Enzyme 2 , Connexin 43 , Humans , Interleukin-6 , Nucleocapsid Proteins , RNA, Viral/analysis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Tumor Necrosis Factor-alpha
7.
Sci Rep ; 10(1): 20463, 2020 11 24.
Article En | MEDLINE | ID: mdl-33235263

Atrial fibrillation (AF) is the most common arrhythmia and is associated with inflammation. AF patients have elevated levels of inflammatory cytokines known to promote vascular leak, such as vascular endothelial growth factor A (VEGF). However, the contribution of vascular leak and consequent cardiac edema to the genesis of atrial arrhythmias remains unknown. Previous work suggests that interstitial edema in the heart can acutely promote ventricular arrhythmias by disrupting ventricular myocyte intercalated disk (ID) nanodomains rich in cardiac sodium channels (NaV1.5) and slowing cardiac conduction. Interestingly, similar disruption of ID nanodomains has been identified in atrial samples from AF patients. Therefore, we tested the hypothesis that VEGF-induced vascular leak can acutely increase atrial arrhythmia susceptibility by disrupting ID nanodomains and slowing atrial conduction. Treatment of murine hearts with VEGF (30-60 min, at clinically relevant levels) prolonged the electrocardiographic P wave and increased susceptibility to burst pacing-induced atrial arrhythmias. Optical voltage mapping revealed slower atrial conduction following VEGF treatment (10 ± 0.4 cm/s vs. 21 ± 1 cm/s at baseline, p < 0.05). Transmission electron microscopy revealed increased intermembrane spacing at ID sites adjacent to gap junctions (GJs; 64 ± 9 nm versus 17 ± 1 nm in controls, p < 0.05), as well as sites next to mechanical junctions (MJs; 63 ± 4 nm versus 27 ± 2 nm in controls, p < 0.05) in VEGF-treated hearts relative to controls. Importantly, super-resolution microscopy and quantitative image analysis revealed reorganization of NaV1.5 away from dense clusters localized near GJs and MJs to a more diffuse distribution throughout the ID. Taken together, these data suggest that VEGF can acutely predispose otherwise normal hearts to atrial arrhythmias by dynamically disrupting NaV1.5-rich ID nanodomains and slowing atrial conduction. These data highlight inflammation-induced vascular leak as a potential factor in the development and progression of AF.


Atrial Fibrillation/physiopathology , Heart Conduction System/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Atrial Fibrillation/metabolism , Electrocardiography , Gap Junctions/metabolism , Heart Conduction System/drug effects , Heart Conduction System/physiopathology , Male , Mice , Microscopy, Electron, Transmission , Models, Biological , Vascular Endothelial Growth Factors/pharmacology
8.
J Biol Chem ; 295(33): 11720-11728, 2020 08 14.
Article En | MEDLINE | ID: mdl-32580946

Post-translational modifications of proteins involved in calcium handling in myocytes, such as the cardiac ryanodine receptor (RyR2), critically regulate cardiac contractility. Recent studies have suggested that phosphorylation of RyR2 by protein kinase G (PKG) might contribute to the cardioprotective effects of cholinergic stimulation. However, the specific mechanisms underlying these effects remain unclear. Here, using murine ventricular myocytes, immunoblotting, proximity ligation as-says, and nitric oxide imaging, we report that phosphorylation of Ser-2808 in RyR2 induced by the muscarinic receptor agonist carbachol is mediated by a signaling axis comprising phosphoinositide 3-phosphate kinase, Akt Ser/Thr kinase, nitric oxide synthase 1, nitric oxide, soluble guanylate cyclase, cyclic GMP (cGMP), and PKG. We found that this signaling pathway is compartmentalized in myocytes, as it was distinct from atrial natriuretic peptide receptor-cGMP-PKG-RyR2 Ser-2808 signaling and independent of muscarinic-induced phosphorylation of Ser-239 in vasodilator-stimulated phosphoprotein. These results provide detailed insights into muscarinic-induced PKG signaling and the mediators that regulate cardiac RyR2 phosphorylation critical for cardiovascular function.


Cyclic GMP-Dependent Protein Kinases/metabolism , Nitric Oxide Synthase Type I/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Signal Transduction , Animals , Cells, Cultured , Mice, Inbred C57BL , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Phosphorylation
9.
Basic Res Cardiol ; 115(4): 38, 2020 05 22.
Article En | MEDLINE | ID: mdl-32444920

Cardiac disease is associated with deleterious emission of mitochondrial reactive oxygen species (mito-ROS), as well as enhanced oxidation and activity of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor (RyR2). The transfer of Ca2+ from the SR via RyR2 to mitochondria is thought to play a key role in matching increased metabolic demand during stress. In this study, we investigated whether augmented RyR2 activity results in self-imposed exacerbation of SR Ca2+ leak, via altered SR-mitochondrial Ca2+ transfer and elevated mito-ROS emission. Fluorescent indicators and spatially restricted genetic ROS probes revealed that both pharmacologically and genetically enhanced RyR2 activity, in ventricular myocytes from rats and catecholaminergic polymorphic ventricular tachycardia (CPVT) mice, respectively, resulted in increased ROS emission under ß-adrenergic stimulation. Expression of mitochondrial Ca2+ probe mtRCamp1h revealed diminished net mitochondrial [Ca2+] with enhanced SR Ca2+ leak, accompanied by depolarization of the mitochondrial matrix. While this may serve as a protective mechanism to prevent mitochondrial Ca2+ overload, protection is not complete and enhanced mito-ROS emission resulted in oxidation of RyR2, further amplifying proarrhythmic SR Ca2+ release. Importantly, the effects of augmented RyR2 activity could be attenuated by mitochondrial ROS scavenging, and experiments with dominant-negative paralogs of the mitochondrial Ca2+ uniporter (MCU) supported the hypothesis that SR-mitochondria Ca2+ transfer is essential for the increase in mito-ROS. We conclude that in a process whereby leak begets leak, augmented RyR2 activity modulates mitochondrial Ca2+ handling, promoting mito-ROS emission and driving further channel activity in a proarrhythmic feedback cycle in the diseased heart.


Calcium/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Female , Heart Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley
10.
J Am Heart Assoc ; 9(11): e015119, 2020 06 02.
Article En | MEDLINE | ID: mdl-32468902

Background Atrial fibrillation (AF) is a comorbidity associated with heart failure and catecholaminergic polymorphic ventricular tachycardia. Despite the Ca2+-dependent nature of both of these pathologies, AF often responds to Na+ channel blockers. We investigated how targeting interdependent Na+/Ca2+ dysregulation might prevent focal activity and control AF. Methods and Results We studied AF in 2 models of Ca2+-dependent disorders, a murine model of catecholaminergic polymorphic ventricular tachycardia and a canine model of chronic tachypacing-induced heart failure. Imaging studies revealed close association of neuronal-type Na+ channels (nNav) with ryanodine receptors and Na+/Ca2+ exchanger. Catecholamine stimulation induced cellular and in vivo atrial arrhythmias in wild-type mice only during pharmacological augmentation of nNav activity. In contrast, catecholamine stimulation alone was sufficient to elicit atrial arrhythmias in catecholaminergic polymorphic ventricular tachycardia mice and failing canine atria. Importantly, these were abolished by acute nNav inhibition (tetrodotoxin or riluzole) implicating Na+/Ca2+ dysregulation in AF. These findings were then tested in 2 nonrandomized retrospective cohorts: an amyotrophic lateral sclerosis clinic and an academic medical center. Riluzole-treated patients adjusted for baseline characteristics evidenced significantly lower incidence of arrhythmias including new-onset AF, supporting the preclinical results. Conclusions These data suggest that nNaVs mediate Na+-Ca2+ crosstalk within nanodomains containing Ca2+ release machinery and, thereby, contribute to AF triggers. Disruption of this mechanism by nNav inhibition can effectively prevent AF arising from diverse causes.


Anti-Arrhythmia Agents/pharmacology , Atrial Fibrillation/prevention & control , Heart Failure/drug therapy , Heart Failure/physiopathology , Heart Rate/drug effects , Riluzole/pharmacology , Sodium Channel Blockers/pharmacology , Sodium Channels/drug effects , Tachycardia, Ventricular/drug therapy , Tetrodotoxin/pharmacology , Adult , Animals , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Calcium Signaling/drug effects , Cardiac Pacing, Artificial , Catecholamines , Disease Models, Animal , Dogs , Female , Heart Failure/metabolism , Humans , Italy , Male , Membrane Potentials/drug effects , Mice, Inbred C57BL , Middle Aged , Retrospective Studies , Ryanodine Receptor Calcium Release Channel/metabolism , Sodium Channels/metabolism , Sodium-Calcium Exchanger/metabolism , Tachycardia, Ventricular/metabolism , Tachycardia, Ventricular/physiopathology , Utah
11.
Microsc Microanal ; 26(1): 157-165, 2020 02.
Article En | MEDLINE | ID: mdl-31931893

The voltage-gated sodium channel [pore-forming subunit of the neuronal voltage-gated sodium channel (NaV1.6)] has recently been found in cardiac myocytes. Emerging studies indicate a role for NaV1.6 in ionic homeostasis as well as arrhythmogenesis. Little is known about the spatial organization of these channels in cardiac muscle, mainly due to the lack of high-fidelity antibodies. Therefore, we developed and rigorously validated a novel rabbit polyclonal NaV1.6 antibody and undertook super-resolution microscopy studies of NaV1.6 localization in cardiac muscle. We developed and validated a novel rabbit polyclonal antibody against a C-terminal epitope on the neuronal sodium channel 1.6 (NaV1.6). Raw sera showed high affinity in immuno-fluorescence studies, which was improved with affinity purification. The antibody was rigorously validated for specificity via multiple approaches. Lastly, we used this antibody in proximity ligation assay (PLA) and super-resolution STochastic Optical Reconstruction Microscopy (STORM) studies, which revealed enrichment of NaV1.6 in close proximity to ryanodine receptor (RyR2), a key calcium (Ca2+) cycling protein, in cardiac myocytes. In summary, our novel NaV1.6 antibody demonstrates high degrees of specificity and fidelity in multiple preparations. It enabled multimodal microscopic studies and revealed that over half of the NaV1.6 channels in cardiac myocytes are located within 100 nm of ryanodine receptor Ca2+ release channels.


Myocardium/cytology , NAV1.6 Voltage-Gated Sodium Channel/analysis , Ryanodine Receptor Calcium Release Channel/analysis , Animals , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Optical Imaging
12.
Cell Calcium ; 82: 102063, 2019 09.
Article En | MEDLINE | ID: mdl-31401388

Here we report the structure of the widely utilized calmodulin (CaM)-dependent protein kinase II (CaMKII) inhibitor KN93 bound to the Ca2+-sensing protein CaM. KN93 is widely believed to inhibit CaMKII by binding to the kinase. The CaM-KN93 interaction is significant as it can interfere with the interaction between CaM and it's physiological targets, thereby raising the possibility of ascribing modified protein function to CaMKII phosphorylation while concealing a CaM-protein interaction. NMR spectroscopy, stopped-flow kinetic measurements, and x-ray crystallography were used to characterize the structure and biophysical properties of the CaM-KN93 interaction. We then investigated the functional properties of the cardiac Na+ channel (NaV1.5) and ryanodine receptor (RyR2). We find that KN93 disrupts a high affinity CaM-NaV1.5 interaction and alters channel function independent of CaMKII. Moreover, KN93 increases RyR2 Ca2+ release in cardiomyocytes independent of CaMKII. Therefore, when interpreting KN93 data, targets other than CaMKII need to be considered.


Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium/metabolism , Calmodulin/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Benzylamines/pharmacology , Calcium Signaling , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/chemistry , Calmodulin/chemistry , Calmodulin/genetics , Cells, Cultured , Crystallography, X-Ray , Humans , Myocytes, Cardiac , NAV1.5 Voltage-Gated Sodium Channel/chemistry , Phosphorylation , Protein Binding , Protein Conformation , Ryanodine/metabolism , Ryanodine Receptor Calcium Release Channel/chemistry , Sulfonamides/pharmacology
13.
Sci Rep ; 9(1): 10179, 2019 07 15.
Article En | MEDLINE | ID: mdl-31308393

Store-operated Ca2+ entry (SOCE), a major Ca2+ signaling mechanism in non-myocyte cells, has recently emerged as a component of Ca2+ signaling in cardiac myocytes. Though it has been reported to play a role in cardiac arrhythmias and to be upregulated in cardiac disease, little is known about the fundamental properties of cardiac SOCE, its structural underpinnings or effector targets. An even greater question is how SOCE interacts with canonical excitation-contraction coupling (ECC). We undertook a multiscale structural and functional investigation of SOCE in cardiac myocytes from healthy mice (wild type; WT) and from a genetic murine model of arrhythmic disease (catecholaminergic ventricular tachycardia; CPVT). Here we provide the first demonstration of local, transient Ca2+ entry (LoCE) events, which comprise cardiac SOCE. Although infrequent in WT myocytes, LoCEs occurred with greater frequency and amplitude in CPVT myocytes. CPVT myocytes also evidenced characteristic arrhythmogenic spontaneous Ca2+ waves under cholinergic stress, which were effectively prevented by SOCE inhibition. In a surprising finding, we report that both LoCEs and their underlying protein machinery are concentrated at the intercalated disk (ID). Therefore, localization of cardiac SOCE in the ID compartment has important implications for SOCE-mediated signaling, arrhythmogenesis and intercellular mechanical and electrical coupling in health and disease.


Arrhythmias, Cardiac/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Animals , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling/drug effects , Excitation Contraction Coupling , Female , Gene Knock-In Techniques , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , ORAI1 Protein/metabolism , Sarcoplasmic Reticulum/metabolism , Stromal Interaction Molecule 1/metabolism
14.
Front Physiol ; 9: 1228, 2018.
Article En | MEDLINE | ID: mdl-30233404

A nanodomain is a collection of proteins localized within a specialized, nanoscale structural environment, which can serve as the functional unit of macroscopic physiologic processes. We are beginning to recognize the key roles of cardiomyocyte nanodomains in essential processes of cardiac physiology such as electrical impulse propagation and excitation-contraction coupling (ECC). There is growing appreciation of nanodomain dysfunction, i.e., nanopathy, as a mechanistic driver of life-threatening arrhythmias in a variety of pathologies. Here, we offer an overview of current research on the role of nanodomains in cardiac physiology with particular emphasis on: (1) sodium channel-rich nanodomains within the intercalated disk that participate in cell-to-cell electrical coupling and (2) dyadic nanodomains located along transverse tubules that participate in ECC. The beat to beat function of cardiomyocytes involves three phases: the action potential, the calcium transient, and mechanical contraction/relaxation. In all these phases, cell-wide function results from the aggregation of the stochastic function of individual proteins. While it has long been known that proteins that exist in close proximity influence each other's function, it is increasingly appreciated that there exist nanoscale structures that act as functional units of cardiac biophysical phenomena. Termed nanodomains, these structures are collections of proteins, localized within specialized nanoscale structural environments. The nano-environments enable the generation of localized electrical and/or chemical gradients, thereby conferring unique functional properties to these units. Thus, the function of a nanodomain is determined by its protein constituents as well as their local structural environment, adding an additional layer of complexity to cardiac biology and biophysics. However, with the emergence of experimental techniques that allow direct investigation of structure and function at the nanoscale, our understanding of cardiac physiology and pathophysiology at these scales is rapidly advancing. Here, we will discuss the structure and functions of multiple cardiomyocyte nanodomains, and novel strategies that target them for the treatment of cardiac arrhythmias.

15.
J Am Heart Assoc ; 7(10)2018 05 02.
Article En | MEDLINE | ID: mdl-29720499

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic syndrome characterized by sudden death. There are several genetic forms of CPVT associated with mutations in genes encoding the cardiac ryanodine receptor (RyR2) and its auxiliary proteins including calsequestrin (CASQ2) and calmodulin (CaM). It has been suggested that impairment of the ability of RyR2 to stay closed (ie, refractory) during diastole may be a common mechanism for these diseases. Here, we explore the possibility of engineering CaM variants that normalize abbreviated RyR2 refractoriness for subsequent viral-mediated delivery to alleviate arrhythmias in non-CaM-related CPVT. METHODS AND RESULTS: To that end, we have designed a CaM protein (GSH-M37Q; dubbed as therapeutic CaM or T-CaM) that exhibited a slowed N-terminal Ca dissociation rate and prolonged RyR2 refractoriness in permeabilized myocytes derived from CPVT mice carrying the CASQ2 mutation R33Q. This T-CaM was introduced to the heart of R33Q mice through recombinant adeno-associated viral vector serotype 9. Eight weeks postinfection, we performed confocal microscopy to assess Ca handling and recorded surface ECGs to assess susceptibility to arrhythmias in vivo. During catecholamine stimulation with isoproterenol, T-CaM reduced isoproterenol-promoted diastolic Ca waves in isolated CPVT cardiomyocytes. Importantly, T-CaM exposure abolished ventricular tachycardia in CPVT mice challenged with catecholamines. CONCLUSIONS: Our results suggest that gene transfer of T-CaM by adeno-associated viral vector serotype 9 improves myocyte Ca handling and alleviates arrhythmias in a calsequestrin-associated CPVT model, thus supporting the potential of a CaM-based antiarrhythmic approach as a therapeutic avenue for genetically distinct forms of CPVT.


Calmodulin/genetics , Gene Transfer Techniques , Genetic Therapy/methods , Heart Rate , Tachycardia, Ventricular/therapy , Animals , Calcium Signaling , Calmodulin/biosynthesis , Calsequestrin/deficiency , Calsequestrin/genetics , Disease Models, Animal , Genetic Predisposition to Disease , Male , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism , Phenotype , Ryanodine Receptor Calcium Release Channel/metabolism , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/metabolism , Tachycardia, Ventricular/physiopathology
16.
J Gen Physiol ; 150(7): 991-1002, 2018 07 02.
Article En | MEDLINE | ID: mdl-29793933

Recent evidence suggests that neuronal Na+ channels (nNavs) contribute to catecholamine-promoted delayed afterdepolarizations (DADs) and catecholaminergic polymorphic ventricular tachycardia (CPVT). The newly identified overlap between CPVT and long QT (LQT) phenotypes has stoked interest in the cross-talk between aberrant Na+ and Ca2+ handling and its contribution to early afterdepolarizations (EADs) and DADs. Here, we used Ca2+ imaging and electrophysiology to investigate the role of Na+ and Ca2+ handling in DADs and EADs in wild-type and cardiac calsequestrin (CASQ2)-null mice. In experiments, repolarization was impaired using 4-aminopyridine (4AP), whereas the L-type Ca2+ and late Na+ currents were augmented using Bay K 8644 (BayK) and anemone toxin II (ATX-II), respectively. The combination of 4AP and isoproterenol prolonged action potential duration (APD) and promoted aberrant Ca2+ release, EADs, and DADs in wild-type cardiomyocytes. Similarly, BayK in the absence of isoproterenol induced the same effects in CASQ2-null cardiomyocytes. In vivo, it prolonged the QT interval and, upon catecholamine challenge, precipitated wide QRS polymorphic ventricular tachycardia that resembled human torsades de pointes. Treatment with ATX-II produced similar effects at both the cellular level and in vivo. Importantly, nNav inhibition with riluzole or 4,9-anhydro-tetrodotoxin reduced the incidence of ATX-II-, BayK-, or 4AP-induced EADs, DADs, aberrant Ca2+ release, and VT despite only modestly mitigating APD prolongation. These data reveal the contribution of nNaVs to triggered arrhythmias in murine models of LQT and CPVT-LQT overlap phenotypes. We also demonstrate the antiarrhythmic impact of nNaV inhibition, independent of action potential and QT interval duration, and provide a basis for a mechanistically driven antiarrhythmic strategy.


Long QT Syndrome/metabolism , Membrane Potentials , Sodium Channels/metabolism , Animals , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/metabolism , Calsequestrin/genetics , Cells, Cultured , Long QT Syndrome/genetics , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology
17.
Front Physiol ; 9: 61, 2018.
Article En | MEDLINE | ID: mdl-29487533

The cardiac action potential (AP) is commonly recoded as an integral signal from isolated myocytes or ensembles of myocytes (with intracellular microelectrodes and extracellular macroelectrodes, respectively). These signals, however, do not provide a direct measure of activity of ion channels and transporters located in two major compartments of a cardiac myocyte: surface sarcolemma and the T-tubule system, which differentially contribute to impulse propagation and excitation-contraction (EC) coupling. In the present study we investigated electrical properties of myocytes within perfused intact rat heart employing loose patch recording with narrow-tip (2 µm diameter) extracellular electrodes. Using this approach, we demonstrated two distinct types of electric signals with distinct waveforms (single peak and multi-peak AP; AP1 and AP2, respectively) during intrinsic pacemaker activity. These two types of waveforms depend on the position of the electrode tip on the myocyte surface. Such heterogeneity of electrical signals was lost when electrodes of larger pipette diameter were used (5 or 10 µm), which indicates that the electric signal was assessed from a region of <5 µm. Importantly, both pharmacological and mathematical simulation based on transverse (T)-tubular distribution suggested that while the AP1 and the initial peak of AP2 are predominantly attributable to the fast, inward Na+ current in myocyte's surface sarcolemma, the late components of AP2 are likely representative of currents associated with L-type Ca2+ channel and Na+/Ca2+ exchanger (NCX) currents which are predominantly located in T-tubules. Thus, loose patch recording with narrow-tip pipette provides a valuable tool for studying cardiac electric activity on the subcellular level in the intact heart.

20.
J Physiol ; 595(12): 3823-3834, 2017 06 15.
Article En | MEDLINE | ID: mdl-28195313

Excitation-contraction coupling is the bridge between cardiac electrical activation and mechanical contraction. It is driven by the influx of Ca2+ across the sarcolemma triggering Ca2+ release from the sarcoplasmic reticulum (SR) - a process termed Ca2+ -induced Ca2+ release (CICR) - followed by re-sequestration of Ca2+ into the SR. The Na+ /Ca2+ exchanger inextricably couples the cycling of Ca2+ and Na+ in cardiac myocytes. Thus, influx of Na+ via voltage-gated Na+ channels (NaV ) has emerged as an important regulator of CICR both in health and in disease. Recent insights into the subcellular distribution of cardiac and neuronal NaV isoforms and their ultrastructural milieu have important implications for the roles of these channels in mediating Ca2+ -driven arrhythmias. This review will discuss functional insights into the role of neuronal NaV isoforms vis-à-vis cardiac NaV s in triggering such arrhythmias and their potential as therapeutic targets in the context of the aforementioned structural observations.


Calcium/metabolism , Myocytes, Cardiac/metabolism , Neurons/metabolism , Sodium Channels/metabolism , Sodium/metabolism , Action Potentials/physiology , Animals , Arrhythmias, Cardiac/metabolism , Excitation Contraction Coupling/physiology , Humans , Sarcoplasmic Reticulum/metabolism
...