Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Heliyon ; 10(13): e33754, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040297

RESUMEN

Objectives: Acute Lymphoblastic Leukemia (ALL) is a multifactorial disease that results from the interaction between multiple genetic factors. ALL is characterized by uncontrolled production of hematopoietic precursor cells of the lymphoid progenitors within the bone marrow. The development of hematological malignancies has been associated with malignant-like cells that express low levels of immunogenic surface molecules, thus, facilitating their escape from cellular antineoplastic immune responses. This risk may be partly influenced by variations in polymorphic genes that control immune function and regulation. Toll-like receptors (TLRs) are well known pattern recognition receptors playing key role in innate immune response. Abnormal expression and dysregulation of TLRs will provide an opportunity for cancer cells to escape from the immune system and enhance their proliferation and angiogenesis. Toll-like receptor 2 (TLR2) play an essential role in innate immunity. Single nucleotide polymorphisms (SNPs) are present in a number of TLR genes and have been associated with various disorders. Methods: In this study, 265 subjects have been divided into two groups included 150 patients with ALL and115 healthy volunteers. All subjects were genotyped using TaqMan PCR techniques. In total, Five SNPs were statistically evaluated in the TLR2 (rs1898830 A/G, rs3804099 T/C, rs3804100 T/C, rs1339 T/C, and rs1337 C/G), which may influence the susceptibility of ALL. Minor allele frequency and genotype distribution were compared across the study groups, and the relative risk and differences between patients and controls were estimated. Moreover, the mRNA expression level was evaluated in patients with ALL and the matched healthy individuals by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Results: TLR2 rs1898830 A/G; rs3804099 T/C; rs3804100 T/C; rs1339 T/C, were significantly decrease the risk in our population, overall and for certain subtypes and ALL samples exhibited significant increase in the mRNA levels of TLR2. Conclusions: This study shows that TLR2 could be an independent prognostic factor of ALL risks in the Saudi population. Suggesting that genetic variation in genes associated with an immune response may be important in the etiology of ALL. In addition, the results herein revealed that TLR2 overexpression is associated with ALL and has diverse biological significance in the context of the complex relationship between inflammation and cancer development. Therefore, these data could open further studies to explore the possible clinical relevance of TLRs as pathological markers for Leukemia and enhance the strategies regarding hematological malignancies prevention based on their gene expression.

2.
Commun Chem ; 7(1): 131, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851819

RESUMEN

Nanoparticle-based therapies are emerging as a pivotal frontier in biomedical research, showing their potential in combating infections and facilitating wound recovery. Herein, selenium-tellurium dopped copper oxide nanoparticles (SeTe-CuO NPs) with dual photodynamic and photothermal properties were synthesized, presenting an efficient strategy for combating bacterial infections. In vitro evaluations revealed robust antibacterial activity of SeTe-CuO NPs, achieving up to 99% eradication of bacteria and significant biofilm inhibition upon near-infrared (NIR) irradiation. Moreover, in vivo studies demonstrated accelerated wound closure upon treatment with NIR-activated SeTe-CuO NPs, demonstrating their efficacy in promoting wound healing. Furthermore, SeTe-CuO NPs exhibited rapid bacterial clearance within wounds, offering a promising solution for wound care. Overall, this versatile platform holds great promise for combating multidrug-resistant bacteria and advancing therapeutic interventions in wound management.

3.
RSC Adv ; 14(27): 18871-18878, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38873544

RESUMEN

Bacteria invade the host's immune system, thereby inducing serious infections. Current treatments for bacterial infections mostly rely on single modalities, which cannot completely inhibit bacteria. This study evaluates the therapeutic potential of SeTe-Ag NPs, designed with excellent photo responsiveness, with a particular focus on their dual-action antibacterial effect and wound healing properties. SeTe-Ag NPs exhibited promising synergistic antibacterial effects due to their superior photothermal and photodynamic properties. The investigation records substantial zones of inhibition of bacteria, demonstrating potent antibacterial effect. Furthermore, upon the irradiation of near-infrared (NIR) light, SeTe-Ag NPs exhibit remarkable antibiofilm and wound-healing capabilities. Overall, this study shows the applications of NIR-active SeTe-Ag NPs, which serve as a versatile platform for biomedical applications.

4.
ACS Omega ; 9(13): 15271-15281, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585130

RESUMEN

Germin and Germin-like proteins (GLPs) are a class of plant proteins that are part of the Cupins superfamily, found in several plant organs including roots, seeds, leaves, and nectar glands. They play a crucial role in plant defense against pathogens and environmental stresses. Herein, this study focused on the promoter analysis of OsGLP12-3 in rice cultivar Swat-1 to elucidate its regulation and functions. The region (1863bp) of the OsGLP12-3 promoter from Swat-1 genomic DNA was amplified, purified, quantified, and cloned using Topo cloning technology, followed by sequencing. Further in silico comparative analysis was conducted between the OsGLP12-3 promoters from Nipponbare and Swat-1 using the Plant CARE database, identifying 24 cis-acting regulatory elements with diverse functions. These elements exhibited distinct distribution patterns in the 2 rice varieties. The OsGLP12-3 promoter revealed an abundance of regulatory elements associated with biotic and abiotic stress responses. Computational tools were employed to analyze the regulatory features of this region. In silico expression analysis of OsGLP12-3, considering various developmental stages, stress conditions, hormones, and expression timing, was performed using the TENOR tool. Pairwise alignment indicated 86% sequence similarity between Nipponbare and Swat-1. Phylogenetic analysis was conducted to explore the evolutionary relationship between the OsGLP12-3 and other plant GLPs. Additionally, 2 unique regulatory elements were modeled and docked, GARE and MBS to understand their hydrogen bonding interactions in gene regulation. The study highlights the importance of OsGLP12-3 in plant defense against biotic and abiotic stresses, supported by its expression patterns in response to various stressors and the presence of specific regulatory elements within its promoter region.

5.
Zoology (Jena) ; 163: 126159, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38471427

RESUMEN

The functional morphology of the skin of Malapteruridae is presumably evolved to cope with a diversified range of ambient physiological, environmental, and behavioral conditions. Herein, we firstly characterized the microstructures and intriguing patterning of the skin of twelve adult electric catfish (Malapterurus electricus, Malapteruridae) using histological, histochemical, immunofluorescent, and ELISA standard methodology. The skin comprises three sequentially-oriented layers: the epidermis, dermis, and hypodermis with a significantly increased thickness of the former. The epidermis contains four types of cells: the surface epithelial cells, mucous cells, granular cells, and club cells. We defined distinctive ampullary electroreceptors in the outer epidermis that possess flask-shaped sensory crypt containing electroreceptor cells together with vertical collagen rods. Dermis and hypodermis are composed of connective tissue; however, the former is much more coarse and dense with comparable reactivity for Masson-Goldner trichrome (MT). Placing our data in the context of the limited body of previous work, we showed subtle changes in the expression of mucin subunits together with cytoskeletal fractions of collagens, myosin, F-actin, keratins, and tubulins. Taken as a whole, our results convincingly showed that the skin of M. electricus shares some structural similarities to other Siluriformes, however, it has some functional modifications that are implicated in protection, defense, and foraging behavior.


Asunto(s)
Bagres , Animales , Bagres/anatomía & histología , Piel/anatomía & histología , Epidermis
6.
Environ Sci Pollut Res Int ; 31(11): 17124-17139, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38334922

RESUMEN

Nanosized lanthanum oxide particles (La2O3) are commonly utilized in various industries. The potential health risks associated with La2O3 nanoparticles, cytotoxic effects at varying doses and time intervals, and the mechanisms behind their induction of behavioral changes remain uncertain and necessitate further investigation. Therefore, this study examined in vivo hepatotoxicity, considering the quantity (60, 150, and 300 mg/kg) and time-dependent induction of reactive oxygen species (ROS) over one week or 21 days. The mice received intraperitoneal injections of three different concentrations in Milli-Q water. Throughout the experiments, no physical changes or weight loss were observed among the groups. However, after 21 days, only the highest concentration showed signs of anxiety in the activity cage (p < 0.05). Subsequently, all animals treated with La2O3 NPs exhibited a significant loss of learning and memory recall using the Active Avoidances test, after 21 days (p < 0.001). Markers for anti-reactive oxygen species (ROS) such as superoxide dismutase (SOD) were significantly upregulated in response to all concentrations of NPs after seven days compared to the control group. This was confirmed by a significant increase in glutathione peroxidase (Gpx1) and pro-apoptotic Caspase-3 expression at the lowest and highest doses. Additionally, both transcription and protein levels of the anti-apoptotic BCL-2 surpassed P53 protein in a dosage-dependent manner, indicating activation of the primary anti-apoptosis pathway. After 21 days, P53 levels exceeded BCL-2 protein levels, confirming a significant loss of BCL-2 mRNA, particularly at the 300 mg/kg concentration. Furthermore, a higher transcription level of Caspase-3, SOD, and Gpx1 was observed, with the highest values detected at the 300 mg/kg concentration, indicating the activation of cell death. Histopathological analysis of the liver illustrated apoptotic bodies resulting from La2O3 NP concentration. The investigation revealed multiple inflammatory foci, cytoplasmic degeneration, steatosis, and DNA fragmentation consistent with increased damage over time due to higher concentrations. Blood samples were also analyzed to determine liver enzymatic changes, including alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate aminotransferase (AST), and lipid profiles. The results showed significant differences among all La2O3 NP concentrations, with the most pronounced damage observed at the 300 mg/kg dose even after 21 days. Based on an animal model, this study suggests that La2O3 hepatotoxicity is likely caused by the size and shape of nanoparticles (NPs), following a dose and time-dependent mechanism that induces the production of reactive oxygen species and behavioral changes such as anxiety and memory loss.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Lantano , Nanopartículas , Óxidos , Ratones , Femenino , Animales , Especies Reactivas de Oxígeno/metabolismo , Caspasa 3/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Nanopartículas/toxicidad , Apoptosis , Hígado , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Superóxido Dismutasa/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Estrés Oxidativo
7.
Environ Pollut ; 345: 123541, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38342434

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) have attracted much attention because of their widespread existence and toxicity. Photodegradation is the main natural decay process of PAHs in soil. The photodegradation kinetics of benzopyrene (BaP) on 16 kinds of soils and 10 kinds of PAHs on Hebei (HE) soil were studied. The results showed that BaP had the highest degradation rate in Shaanxi (SN) soil (kobs = 0.11 min-1), and anthracene (Ant) was almost completely degraded after 16 h of irradiation in HE soil. Two quantitative structure-activity relationship (QSAR) models were established by the multiple linear regression (MLR) method. The developed QSAR models have good stability, robustness and predictability. The model revealed that the main factors affecting the photodegradation of PAHs are soil organic matter (SOM) and the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (Egap). SOM can function as a photosensitizer to induce the production of active species for photodegradation, thus favoring the photodegradation of PAHs. In addition, compounds with lower Egap are less stable and more reactive, and thus are more prone to photodegradation. Finally, the QSAR model was optimized using machine learning approach. The results of this study provide basic information on the photodegradation of PAHs and have important significance for predicting the environmental behavior of PAHs in soil.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo , Relación Estructura-Actividad Cuantitativa , Fotólisis , Contaminantes del Suelo/análisis
8.
Mol Neurobiol ; 61(8): 5320-5336, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38191695

RESUMEN

Aluminium (AL) is a strong environmental neurotoxin linked to neurodegenerative disorders. Widespread industrial use leads to its presence in water systems, causing bioaccumulation in organisms. This, in turn, results in the bioaccumulation of AL in various organisms. Several studies have highlighted the benefits of enhanced physical activity in combating neurodegenerative diseases. Meanwhile widespread presence of apigenin in aquatic environment has been largely overlooked, in terms of its potential to counter AL-induced neurotoxicity. The combined impact of exercise and apigenin in mitigating the effects of AL-induced neurotoxicity in aquatic animals remains unexplored. Hence, the objective of this study is to determine whether the combined treatment of exercise and apigenin can effectively alleviate the chronic neurotoxicity induced by AL. Zebrafish that were exposed to AL showed behaviours resembling anxiety, increased aggression, unusual swimming pattern, and memory impairment, which are typical features observed in Alzheimer's disease (AD)-like syndrome. Combined treatment of exercise and apigenin protects zebrafish from AL-induced neurotoxicity, which was measured by improvements in memory, reduced anxiety and aggression, and increased levels of antioxidant enzymes and acetylcholinesterase (AChE) activity. Furthermore, AL exposure is associated with increased expression of genes related to neuroinflammation and AD. However, synergistic effect of exercise and apigenin counteract this effect in AL-treated zebrafish. These findings suggest that AL is involved in neurodegenerative diseases in fish, which could affect the integrity of aquatic ecosystem. Hence, there is a strong correlation between enhanced physical activity, apigenin, and the well-being of the ecosystem.


Asunto(s)
Acetilcolinesterasa , Aluminio , Apigenina , Condicionamiento Físico Animal , Pez Cebra , Animales , Apigenina/farmacología , Aluminio/toxicidad , Acetilcolinesterasa/metabolismo , Conducta Animal/efectos de los fármacos , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Ansiedad/tratamiento farmacológico
9.
Toxics ; 12(1)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38251010

RESUMEN

Butylated hydroxyanisole (BHA), a synthetic phenolic antioxidant (SPA), is now widely present in natural waters. To improve the degradation efficiency of BHA and reduce product toxicity, a combination of peroxymonosulfate (PMS) and Ferrate(VI) (Fe(VI)) was used in this study. We systematically investigated the reaction kinetics, mechanism and product toxicity in the degradation of BHA through the combined use of PMS and Fe(VI). The results showed that PMS and Fe(VI) have synergistic effects on the degradation of BHA. The effects of operational factors, including PMS dosage, pH and coexisting ions (Cl-, SO42-, HCO3-, K+, NH4+ and Mg2+), and different water matrices were investigated through a series of kinetic experiments. When T = 25 °C, the initial pH was 8.0, the initial BHA concentration was 100 µM, the initial concentration ratio of [PMS]0:[Fe(VI)]0:[BHA]0 was 100:1:1 and the degradation rate could reach 92.4% within 30 min. Through liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) identification, it was determined that the oxidation pathway of BHA caused by PMS/Fe(VI) mainly includes hydroxylation, ring-opening and coupling reactions. Density functional theory (DFT) calculations indicated that •OH was most likely to attack BHA and generate hydroxylated products. The comprehensive comparison of product toxicity results showed that the PMS/Fe(VI) system can effectively reduce the environmental risk of a reaction. This study contributes to the development of PMS/Fe(VI) for water treatment applications.

10.
Acta Parasitol ; 69(1): 465-470, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38190015

RESUMEN

PURPOSE: This study was carried out to assess the prevalence of Trypanosoma evansi infection in naturally diseased Dromedary camels in Dammam, Eastern region of Saudi Arabia. The detection of Trypanosoma evansi was performed using the parasitological, serological, and molecular diagnosis and a comparison between such methods were analyzed. In addition, evaluation of therapeutic efficacy of selected antitrypanosomal drugs, cymelarsan and quinapyrmine (aquin-1.5), was trialed for treatment of diagnosed infected cases. METHODS: A total 350 randomly selected camels were evaluated using thin blood smear (TBS), RoTat1.2 PCR and CATT/T. evansi techniques. RESULTS: The total prevalence was 6.9%, 7.7%, and 32.8% by TBS, RoTat1.2 PCR and CATT/T. evansi techniques, respectively. Although PCR detect T. evansi in more samples than TBS, the agreement was good (K = 0.9). Among the CATT/T. evansi results, PCR detect T. evansi in 12 and 15 CATT positive and negative camels, respectively, with low agreement (Kappa = 0.1). The use of cymelarsan and quinapyramine sulfate in the treatment of naturally infected cases demonstrated a very efficient therapeutic response. CONCLUSION: It was found that 1. Comparing the CATT/T. evansi and PCR results, the positivity of CATT was higher than PCR detection, while the agreement was poor (K = 0.1). 2. Cymelarsan and aquin-1.5 proved to be effective in the treatment of naturally infected camels, but cymelarsan presented with higher effectiveness (100%) than aquin-treated camels (83.3%). a 3. The use of cymelarsan and CATT is recommended for disease treatment and control.


Asunto(s)
Camelus , Compuestos de Quinolinio , Triazinas , Tripanocidas , Trypanosoma , Tripanosomiasis , Animales , Camelus/parasitología , Trypanosoma/efectos de los fármacos , Trypanosoma/genética , Tripanosomiasis/veterinaria , Tripanosomiasis/epidemiología , Tripanosomiasis/tratamiento farmacológico , Tripanosomiasis/parasitología , Arabia Saudita/epidemiología , Tripanocidas/uso terapéutico , Tripanocidas/farmacología , Prevalencia , Reacción en Cadena de la Polimerasa/veterinaria , Arsenicales/uso terapéutico , Masculino
11.
Sci Total Environ ; 912: 169179, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38081431

RESUMEN

Combustion of fossil fuels, industry and agriculture sectors are considered as the largest emitters of carbon dioxide. In fact, the emission of CO2 greenhouse gas has been considerably intensified during the last two decades, resulting in global warming and inducing variety of adverse health effects on human and environment. Calling for effective and green feedstocks to remove CO2, low-cost materials such as coal ashes "wastes-to-materials", have been considered among the interesting candidates of CO2 capture technologies. On the other hand, several techniques employing coal ashes as inorganic supports (e.g., catalytic reduction, photocatalysis, gas conversion, ceramic filter, gas scrubbing, adsorption, etc.) have been widely applied to reduce CO2. These processes are among the most efficient solutions utilized by industrialists and scientists to produce clean energy from CO2 and limit its continuous emission into the atmosphere. Herein, we review the recent trends and advancements in the applications of coal ashes including coal fly ash and bottom ash as low-cost wastes to reduce CO2 concentration through adsorption and catalysis processes. The chemical routes of structural modification and characterization of coal ash-based feedstocks are discussed in details. The adsorption and catalytic performance of the coal ashes derivatives towards CO2 selective reduction to CH4 are also described. The main objective of this review is to highlight the excellent capacity of coal fly ash and bottom ash to capture and selective conversion of CO2 to methane, with the aim of minimizing coal ashes disposal and their storage costs. From a practical view of point, the needs of developing new advanced technologies and recycling strategies might be urgent in the near future to efficient make use of coal ashes as new cleaner materials for CO2 remediation purposes, which favourably affects the rate of global warming.

12.
Environ Res ; 244: 117961, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38123051

RESUMEN

By utilizing the mediation effect model and the spatial Durbin model, this research investigates the influence that environmental restrictions have had on marine pollution in 38 coastal prefecture-level cities from the years 2000-2018. In order to gain a comprehensive understanding of the effect that environmental legislation has on contamination in offshore regions as well as its primary goal, the research takes a variety of different approaches into consideration. Following are the findings from the study; Firstly, pollution levels in coastal marine areas tend to rise at first and then fall when environmental laws are enacted, illustrating a non-linear pattern known as an inverted "U" shape. In order to improve the maritime environment through environmental legislation, it is crucial to support new green technologies. There is a "U" shaped linkage amongst environmental legislation and development of environmentally friendly technologies. Spatial spillover effects may allow for the regulation of coastal city environments to affect marine pollution in neighboring areas. Secondly, there is also an inverted "U" pattern visible in the impact trajectory of this effect. According to the results of this research, it is crucial to set up a strict and factually sound regulatory framework in the field of marine environmental governance. It is also suggested that local context be taken into account while crafting environmental regulating regulations. Also, it's crucial to promote development, dissemination, and use of green technology by completely capitalizing on the innovation's conduction effect. Thirdly, promoting cooperation efforts among areas to avoid and control such pollution is essential, and the transfer and management of offshore pollution between regions must be a top priority.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Política Ambiental , China , Ciudades , Contaminación Ambiental , Análisis Espacial , Desarrollo Económico
13.
Chemosphere ; 349: 140952, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101481

RESUMEN

The degradation process of bisphenol S (BPS) in ozone/peroxymonosulfate (O3/PMS) system was systematically explored. The results showed that the removal efficiency of BPS by O3 could be significantly improved with addition of PMS. Compared with ozonation alone, the pseudo-first-order constant (kobs) was increased by 2-5 times after adding 400 µM PMS. In O3/PMS system, accelerated removal of BPS was observed under neutral and alkaline conditions. The removal efficiency of BPS reached 100% after 40 s of reaction at pH 7.0, with the kobs of 0.098 s-1. Moreover, Cu2+ had a catalytic effect on the O3/PMS system, because it could catalyze the decomposition of ozone and PMS to produce •OH and SO4•-, respectively. Electron paramagnetic resonance illustrated that •OH and SO4•- were the reactive species in O3/PMS system. Twelve intermediates were identified by mass spectrometry, and the degradation reactions in O3/PMS system mainly included hydroxylation, sulfate addition, polymerization and ß-scission. Finally, the toxicity of the products was evaluated by the EOCSAR program. Our results introduce an efficient method for BPS removal and would provide some guidance for the development of O3-based advanced oxidation technology.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Ozono/química , Contaminantes Químicos del Agua/análisis , Peróxidos/química , Oxidación-Reducción
14.
ACS Omega ; 8(50): 48166-48180, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38144066

RESUMEN

Exfoliated kaolinite nanosheets (EXK) and their hybridization with ß-cyclodextrin (ß-CD/EXK) were evaluated as potential-enhanced adsorbents of methyl parathion (MP) in synergetic investigations to determine the effects of the different modification procedures. The adsorption behaviors were described on the basis of the energetic steric and energetic factors of the specific advanced equilibrium models (monolayer model of one energy). The functionalization process with ß-CD enhanced the adsorption behaviors of MP considerably to 350.6 mg/g in comparison to EXK (291.7 mg/g) and natural kaolinite (K) (244.7 mg/g). The steric studies revealed a remarkable improvement in the quantities of the existing receptors after exfoliation (Nm = 134.4 mg/g) followed by ß-CD hybridization (Nm = 162.3 mg/g) as compared to K (75.7 mg/g), which was reflected in the determined adsorption capacities of MP. Additionally, each active free site of ß-CD/EXK can adsorb about 3 molecules of MP, which occur in a vertical orientation by types of multimolecular mechanisms. The energetic investigations of Gaussian energy (<8.6 kJ/mol) and adsorption energy (<40 kJ/mol) validate the physical adsorption of MP, which might involve the cooperation of dipole bonding forces, van der Waals, and hydrogen bonding. The properties and entropy values, free enthalpy, and intern energy as the investigated thermodynamic functions declared the exothermic and spontaneous behaviors of the MP adsorption.

15.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37960371

RESUMEN

The assessment of food and industrial crops during harvesting is important to determine the quality and downstream processing requirements, which in turn affect their market value. While machine learning models have been developed for this purpose, their deployment is hindered by the high cost of labelling the crop images to provide data for model training. This study examines the capabilities of semi-supervised and active learning to minimise effort when labelling cotton lint samples while maintaining high classification accuracy. Random forest classification models were developed using supervised learning, semi-supervised learning, and active learning to determine Egyptian cotton grade. Compared to supervised learning (80.20-82.66%) and semi-supervised learning (81.39-85.26%), active learning models were able to achieve higher accuracy (82.85-85.33%) with up to 46.4% reduction in the volume of labelled data required. The primary obstacle when using machine learning for Egyptian cotton grading is the time required for labelling cotton lint samples. However, by applying active learning, this study successfully decreased the time needed from 422.5 to 177.5 min. The findings of this study demonstrate that active learning is a promising approach for developing accurate and efficient machine learning models for grading food and industrial crops.


Asunto(s)
Aprendizaje Automático , Aprendizaje Automático Supervisado , Bosques Aleatorios , Aprendizaje Basado en Problemas
16.
Toxics ; 11(10)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37888717

RESUMEN

Hepatotoxicity is one of the significant side effects of chronic diabetes mellitus (DM) besides nephrotoxicity and pancreatitis. The management of this disease is much dependent on the restoration of the liver to its maximum functionality, as it is the central metabolic organ that gets severely affected during chronic diabetes. The present study investigates if the silver nanoparticles decorated with curcumin (AgNP-Cur) can enhance the efficacy of metformin (a conventional antidiabetic drug) by countering the drug-induced hepatoxicity. Swiss albino rats were categorized into six treatment groups (n = 6): control (group I without any treatment), the remaining five groups (group II, IV, V, VI) were DM-induced by streptozocin. Group II was untreated diabetic positive control, whereas groups III was administered with AgNP-cur (5 mg/kg). Diabetic group IV treated with metformin while V and VI were treated with metformin in a combination of the two doses of NPs (5 and 10 mg/kg) according to the treatment schedule. Biochemical and histological analysis of blood and liver samples were conducted after the treatment. The groups V and VI treated with the combination exhibited remarkable improvement in fasting glucose, lipid profile (HDL and cholesterol), liver function tests (AST, ALT), toxicity markers (GGT, GST and LDH), and redox markers (GSH, MDA and CAT) in comparison to group II in most of the parameters. Histological evaluation and comet assay further consolidate these biochemical results, pleading the restoration of the cellular structure of the target tissues and their nuclear DNA. Therefore, the present study shows that the NPs can enhance the anti-diabetic action by suppression of the drug-mediated hepatoxicity via relieving from oxidative stress, toxic burden and inflammation.

17.
Pharmaceutics ; 15(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37896146

RESUMEN

Propolis is a naturally occurring substance with beneficial properties; bees produce it from various plant sources, and it is an anti-inflammatory and therapeutic resinous substance. This study aimed to enhance the biological features of propolis extract by loading it onto active film. Firstly, extraction was performed using three solvent systems, and their total phenolic, flavonoid, and antioxidant activity was measured. Propolis ethanol extract (EEP) was evaluated for phenolic fraction content and then chosen to prepare a chitosan-loaded emulsion with several concentrations. The antibacterial, anti-mycotic, and anti-mycotoxigenic properties of the extract and nanoemulsion were assessed. PPE's cytotoxicity and nanoemulsion were evaluated using brine shrimp and cell line assays. Results indicate higher phenolic (322.57 ± 4.28 mg GAE/g DW), flavonoid (257.64 ± 5.27 mg QE/g DW), and antioxidant activity of the EEP. The phenolic fraction is distinguished by 18 phenolic acids with high p-hydroxybenzoic content (171.75 ± 1.64 µg/g) and 12 flavonoid compounds with high pinocembrin and quercetin content (695.91 ± 1.76 and 532.35 ± 1.88 µg/g, respectively). Phenolic acid derivatives (3,4-Dihydroxybenzaldehyde, 3,4-Dihydroxyphenol acetate, and di-methoxy cinnamic) are also found. Concentrations of 50, 100, 150, and 200 ng EEP loaded on chitosan nanoemulsion reflect significant antibacterial activity against pathogenic bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA) and toxigenic fungi, particularly Fusarium. Among the four EEP-loaded concentrations, the nanoemulsion with 150 ng showed outstanding features. Using a simulated medium, 150 and 200 ng of EEP-loaded chitosan nanoemulsion concentrations can stop zearalenone production in Fusarium media with complete fungi inhibition. Also, it reduced aflatoxins production in Aspergillus media, with fungal inhibition (up to 47.18%). These results recommended the EEP-chitosan application for pharmaceutics and medical use as a comprehensive wound healing agent.

18.
Environ Toxicol Pharmacol ; 102: 104215, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37423395

RESUMEN

Although the toxicity of microplastics (MPs) and pesticides has recently been described, the possible effects of combining these pollutants are poorly understood. Thus, we evaluated the potential impact of exposure to polyethylene MP (PE-MP) and abamectin (ABM) (alone and combined) in zebrafish. After five days, the combined exposure to MP and ABM decreased the survival rate compared to exposures to individual pollutants. A significant increase in reactive oxygen species (ROS), lipid peroxidation, apoptosis, and impairment in antioxidant response was observed in zebrafish larvae. Morphological changes in the eyes of zebrafish significantly increased in the combined exposure group than in the individual exposure. Furthermore, the bax and p53 expression (specific apoptotic genes) was significantly upregulated after the combined exposure to PE-MP and ABM. So, the synergetic effect of MP and ABM cannot be ignored, and further research on other higher models is required to confirm its consequences.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos/toxicidad , Polietileno/toxicidad , Pez Cebra/fisiología , Larva , Contaminantes Químicos del Agua/toxicidad , Apoptosis , Transducción de Señal
19.
BMC Ophthalmol ; 23(1): 333, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495952

RESUMEN

OBJECTIVE: The aim of this work is to evaluate the safety and efficacy of repeated sessions of photo-activated chromophore for keratitis-cross linking (PACK-CXL) window absorption (WA) for the treatment of resistant bacterial keratitis (BK). PATIENTS AND METHODS: This is a retrospective clinical cohort study. Thirty eyes with clinically suspected and lab-confirmed bacterial keratitis, resistant to appropriate antibiotic therapy- which was modified by sensitivity reports- for 2 weeks with failure of epithelialization for 4 weeks after the standard anti-microbial therapy (SAT) together with one setting of PACK-CXL WA were included. If after the first session of PACK-CXL, there is a start of improvement in the form of reduction of the size of corneal ulcer and stromal infiltrates together with the start of epithelialization on clinical examination and AS-OCT, another session of PACK-CXL WA was performed after one week, and so on, till the complete healing and resolution of bacterial keratitis and confirmation by negative bacterial culture. Identification of the micro-organisms was done by lab study before and after treatment. Corneal healing was evaluated by corneal examination and anterior segment OCT (AS-OCT). RESULTS: Thirty eyes of 30 patients were recruited in this study. They were 16 males and 14 females, their mean age was 44.3 ± 5.38 years. The mean ulcer size was 3.96 ± 1.87 (mm3), while the mean size of stromal infiltrates was 4.52 ± 2.24 (mm3). PACK-CXL WA treatment was performed an average of 2.87 times for the 30 eyes. Complete healing and resolution (Successful treatment) was observed in 27 eyes (90%) of cases and failure of epithelialization was observed only in 3 eyes (10%). Complete corneal healing was reported in the second month postoperatively in 90% of eyes. CONCLUSION AND RECOMMENDATION: PACK-CXL WA may be a promising, non-invasive treatment option for resistant bacterial keratitis. It may have a synergistic effect with standard antimicrobial treatment (SAT). Also, it can overcome the antibiotics resistance that has become rapidly spreading worldwide. Repeated sessions of PACK-CXL WA may be more effective for the treatment of resistant bacterial keratitis till complete epithelialization and resolution of BK than a single session with few complications. However, further prospective and comparative studies to support the results are needed.


Asunto(s)
Infecciones Bacterianas del Ojo , Queratitis , Masculino , Femenino , Humanos , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Fármacos Fotosensibilizantes/uso terapéutico , Estudios de Cohortes , Riboflavina/uso terapéutico , Rayos Ultravioleta , Colágeno/uso terapéutico , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Infecciones Bacterianas del Ojo/microbiología , Reactivos de Enlaces Cruzados/uso terapéutico
20.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37259318

RESUMEN

The efficacy of anticancer drug 5-FU is suppressed due to various factors, including severe side effects and decreased insensitivity during prolonged chemotherapy. Elevated endogenous copper (Cu) levels are one of the prominent hallmark features of cancer cells. In the present investigation, this feature was targeted in diethyl nitrosamine-phenobarbital-induced hepatocellular carcinoma (HCC) in a rat model system by an established anticancer drug, 5-FU, co-administered with copper and its chelating agent, disulfiram. After treatment with the test chemicals in HCC-induced rats, blood and liver samples were subjected to biochemical, molecular, and histopathological analyses. The analysis revealed that reactive oxygen species-mediated oxidative stress is the crucial etiological reason for the pathogenesis of HCC in rats, as evidenced by the significantly compromised activity of major antioxidant enzymes and elevated levels of oxidative damaged products with major histological alterations compared to the control. However, the combination of 5-FU with DSF demonstrated a significant improvement in most of the parameters, followed by 5-FU-Cu in the combination-treated groups. The combination treatment improved the histological details and triggered apoptosis in the cancer cells to a remarkable extent, as the levels of cleaved PARP and caspase-3 were significantly higher than those in the HCC rats treated with the drug alone. The present study envisages that manipulating the Cu-level greatly enhances the antineoplastic activity of 5-FU and sensitizes cancer cells to the increased efficacy of the drug.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA