Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Microbiol Res ; 285: 127786, 2024 Aug.
Article En | MEDLINE | ID: mdl-38820703

The α-Gal syndrome (AGS) is an IgE-mediated tick borne-allergy that results in delayed anaphylaxis to the consumption of mammalian meat and products containing α-Gal. Considering that α-Gal-containing microbiota modulates natural antibody production to this glycan, this study aimed to evaluate the influence on tick salivary compounds on the gut microbiota composition in the zebrafish (Danio rerio) animal model. Sequencing of 16 S rDNA was performed in a total of 75 zebrafish intestine samples, representing different treatment groups: PBS control, Ixodes ricinus tick saliva, tick saliva non-protein fraction (NPF), tick saliva protein fraction (PF), and tick saliva protein fractions 1-5 with NPF (F1-5). The results revealed that treatment with tick saliva and different tick salivary fractions, combined with α-Gal-positive dog food feeding, resulted in specific variations in zebrafish gut microbiota composition at various taxonomic levels and affected commensal microbial alpha and beta diversities. Metagenomics results were corroborated by qPCR, supporting the overrepresentation of phylum Firmicutes in the tick saliva group, phylum Fusobacteriota in group F1, and phylum Cyanobacteria in F2 and F5 compared to the PBS-control. qPCRs results at genus level sustained significant enrichment of Plesiomonas spp. in groups F3 and F5, Rhizobium spp. in NPF and F4, and Cloacibacterium spp. dominance in the PBS control group. This study provides new results on the role of gut microbiota in allergic reactions to tick saliva components using a zebrafish model of AGS. Overall, gut microbiota composition in response to tick saliva biomolecules may be associated with allergic reactions to mammalian meat consumption in AGS.


Food Hypersensitivity , Gastrointestinal Microbiome , Saliva , Zebrafish , Animals , Saliva/microbiology , Saliva/immunology , Zebrafish/microbiology , Food Hypersensitivity/microbiology , Food Hypersensitivity/immunology , RNA, Ribosomal, 16S/genetics , Meat , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Metagenomics , Salivary Proteins and Peptides/immunology , Salivary Proteins and Peptides/metabolism , Ixodes/microbiology , Disease Models, Animal
2.
Exp Appl Acarol ; 91(4): 661-679, 2023 Dec.
Article En | MEDLINE | ID: mdl-37973690

Ectoparasites, such as ticks, modulate host population dynamics by impacting demographic traits. They transmit infectious agents among their hosts, posing a critical threat to animal and public health. This study aimed to characterize and analyze the Hyalomma aegyptium infestation on one of its main hosts, the spur-thighed tortoise, its effects on demographic traits, and to determine the diversity of infectious agents present in both ticks and tortoises in the Maamora forest (northwestern Morocco). Our results show that 100% of the tortoises were parasitized by adult ticks in spring, an infestation intensity of 4 ticks/tortoise (5.1 and 3.6 ticks/tortoise in males and females, respectively; 4.2 and 3.3 ticks/tortoise in gravid and non-gravid females, respectively) and an abundance ranging from 1 to 12. Although without significant differences, male tortoises had higher tick abundances than females. The interaction of tortoise sex and body condition was significantly related to tick abundance, male body condition decreased with higher tick abundance in contrast to females. Nevertheless, the interaction of body condition and reproductive stage of females was not significantly related to tick abundance. Gravid females were significantly associated with tick abundance, showing a slightly higher infestation than non-gravid females. Molecular analysis of pooled tick samples revealed the presence of Ehrlichia ewingii, Candidatus Midichloria mitochondrii, and Rickettsia africae, with a minimum infection rate of 0.61 to 1.84%. However, blood sample analysis of the tortoises was infectious agent-free, pinpointing a lack of significant health problems. Given the possible effect on the transmission of zoonotic diseases by spur-thighed tortoises associated with their frequent collection as pets, it should be surveyed to control possible human health problems. In conservation terms, as a long-lived species, the role of tick infestation in demographic traits might be included in the management and conservation programs of spur-thighed tortoises.


Tick Infestations , Ticks , Turtles , Female , Male , Animals , Humans , Tick Infestations/epidemiology , Tick Infestations/veterinary , Tick Infestations/parasitology , Pilot Projects , Population Dynamics
3.
Pathogens ; 12(10)2023 Oct 19.
Article En | MEDLINE | ID: mdl-37887774

In this comprehensive review study, we addressed the challenge posed by ticks and tick-borne diseases (TBDs) with growing incidence affecting human and animal health worldwide. Data and perspectives were collected from different countries and regions worldwide, including America, Europe, Africa, Asia, and Oceania. The results updated the current situation with ticks and TBD and how it is perceived by society with information bias and gaps. The study reinforces the importance of multidisciplinary and international collaborations to advance in the surveillance, communication and proposed future directions to address these challenges.

4.
Microbiol Spectr ; 11(4): e0005023, 2023 08 17.
Article En | MEDLINE | ID: mdl-37314328

Myxoma virus (MYXV) and rabbit hemorrhagic disease virus (RHDV) are important drivers of the population decline of the European rabbit, an endangered keystone species. Both viruses elicit strong immune responses, but the long-term dynamics of humoral immunity are imperfectly known. This study aimed to assess the determinants of the long-term dynamics of antibodies to each virus based on a longitudinal capture-mark-recapture of wild European rabbits and semiquantitative serological data of MYXV and RHDV GI.2-specific IgG. The study included 611 indirect enzyme-linked immunosorbent assay (iELISA) normalized absorbance ratios for each MYXV and RHDV GI.2 from 505 rabbits from 2018 to 2022. Normalized absorbance ratios were analyzed using log-linear mixed models, showing a significant positive relationship with the time since the first capture of individual rabbits, with monthly increases of 4.1% for antibodies against MYXV and 2.0% against RHDV GI.2. Individual serological histories showed fluctuations over time, suggesting that reinfections boosted the immune response and likely resulted in lifelong immunity. Normalized absorbance ratios significantly increased with the seroprevalence in the population, probably because of recent outbreaks, and with body weight, highlighting the role of MYXV and RHDV GI.2 in determining survival to adulthood. Juvenile rabbits seropositive for both viruses were found, and the dynamics of RHDV GI.2 normalized absorbance ratios suggest the presence of maternal immunity up to 2 months of age. Semiquantitative longitudinal serological data provide epidemiological information, otherwise lost when considering only qualitative data, and support a lifelong acquired humoral immunity to RHDV GI.2 and MYXV upon natural infection. IMPORTANCE This study addresses the long-term dynamics of humoral immunity to two major viral pathogens of the European rabbit, an endangered keystone species of major ecological relevance. Such studies are particularly challenging in free-ranging species, and a combination of longitudinal capture-mark-recapture and semiquantitative serology was used to address this question. Over 600 normalized absorbance ratios of iELISA, obtained from 505 individual rabbits in 7 populations over 5 years, were analyzed using linear mixed models. The results support a lifelong acquired humoral immunity to myxoma virus and rabbit hemorrhagic disease virus upon natural infection and suggest the presence of maternal immunity to the latter in wild juvenile rabbits. These results contribute to understanding the epidemiology of two viral diseases threatening this keystone species and assist in developing conservation programs.


Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Myxoma virus , Myxoma , Animals , Rabbits , Hemorrhagic Disease Virus, Rabbit/physiology , Immunity, Humoral , Seroepidemiologic Studies , Caliciviridae Infections/veterinary , Caliciviridae Infections/epidemiology , Myxoma virus/physiology
5.
Sci Rep ; 8(1): 4961, 2018 03 21.
Article En | MEDLINE | ID: mdl-29563538

Vascular calcification (VC) is the process of deposition of calcium phosphate crystals in the blood vessel wall, with a central role for vascular smooth muscle cells (VSMCs). VC is highly prevalent in chronic kidney disease (CKD) patients and thought, in part, to be induced by phosphate imbalance. The molecular mechanisms that regulate VC are not fully known. Here we propose a novel role for the mineralisation regulator Ucma/GRP (Upper zone of growth plate and Cartilage Matrix Associated protein/Gla Rich Protein) in phosphate-induced VSMC calcification. We show that Ucma/GRP is present in calcified atherosclerotic plaques and highly expressed in calcifying VSMCs in vitro. VSMCs from Ucma/GRP-/- mice showed increased mineralisation and expression of osteo/chondrogenic markers (BMP-2, Runx2, ß-catenin, p-SMAD1/5/8, ALP, OCN), and decreased expression of mineralisation inhibitor MGP, suggesting that Ucma/GRP is an inhibitor of mineralisation. Using BMP signalling inhibitor noggin and SMAD1/5/8 signalling inhibitor dorsomorphin we showed that Ucma/GRP is involved in inhibiting the BMP-2-SMAD1/5/8 osteo/chondrogenic signalling pathway in VSMCs treated with elevated phosphate concentrations. Additionally, we showed for the first time evidence of a direct interaction between Ucma/GRP and BMP-2. These results demonstrate an important role of Ucma/GRP in regulating osteo/chondrogenic differentiation and phosphate-induced mineralisation of VSMCs.


Atherosclerosis/pathology , Bone Morphogenetic Protein 2/metabolism , Plaque, Atherosclerotic/pathology , Proteins/metabolism , Vascular Calcification/pathology , Animals , Aorta/cytology , Aorta/pathology , Biomarkers/metabolism , Cells, Cultured , Chondrogenesis/drug effects , Disease Models, Animal , Extracellular Matrix Proteins , Gene Expression Regulation/drug effects , Humans , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Phosphates/adverse effects , Primary Cell Culture , Protein Binding , Proteins/genetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Smad Proteins/metabolism , Vascular Calcification/chemically induced
6.
Cell Mol Life Sci ; 73(5): 1051-65, 2016 Mar.
Article En | MEDLINE | ID: mdl-26337479

Osteoarthritis (OA) is a whole-joint disease characterized by articular cartilage loss, tissue inflammation, abnormal bone formation and extracellular matrix (ECM) mineralization. Disease-modifying treatments are not yet available and a better understanding of osteoarthritis pathophysiology should lead to the discovery of more effective treatments. Gla-rich protein (GRP) has been proposed to act as a mineralization inhibitor and was recently shown to be associated with OA in vivo. Here, we further investigated the association of GRP with OA mineralization-inflammation processes. Using a synoviocyte and chondrocyte OA cell system, we showed that GRP expression was up-regulated following cell differentiation throughout ECM calcification, and that inflammatory stimulation with IL-1ß results in an increased expression of COX2 and MMP13 and up-regulation of GRP. Importantly, while treatment of articular cells with γ-carboxylated GRP inhibited ECM calcification, treatment with either GRP or GRP-coated basic calcium phosphate (BCP) crystals resulted in the down-regulation of inflammatory cytokines and mediators of inflammation, independently of its γ-carboxylation status. Our results strengthen the calcification inhibitory function of GRP and strongly suggest GRP as a novel anti-inflammatory agent, with potential beneficial effects on the main processes responsible for osteoarthritis progression. In conclusion, GRP is a strong candidate target to develop new therapeutic approaches.


Calcinosis/metabolism , Inflammation/metabolism , Osteoarthritis/metabolism , Proteins/metabolism , Calcinosis/complications , Calcinosis/immunology , Calcinosis/pathology , Cell Differentiation , Cells, Cultured , Chondrocytes/immunology , Chondrocytes/metabolism , Chondrocytes/pathology , Humans , Inflammation/complications , Inflammation/immunology , Inflammation/pathology , Intercellular Signaling Peptides and Proteins , Intracellular Signaling Peptides and Proteins , Osteoarthritis/complications , Osteoarthritis/immunology , Osteoarthritis/pathology , Proteins/analysis , Proteins/immunology
7.
Arterioscler Thromb Vasc Biol ; 35(2): 399-408, 2015 Feb.
Article En | MEDLINE | ID: mdl-25538207

OBJECTIVE: Vascular and valvular calcifications are pathological processes regulated by resident cells, and depending on a complex interplay between calcification promoters and inhibitors, resembling skeletal metabolism. Here, we study the role of the vitamin K-dependent Gla-rich protein (GRP) in vascular and valvular calcification processes. APPROACH AND RESULTS: Immunohistochemistry and quantitative polymerase chain reaction showed that GRP expression and accumulation are upregulated with calcification simultaneously with osteocalcin and matrix Gla protein (MGP). Using conformation-specific antibodies, both γ-carboxylated GRP and undercarboxylated GRP species were found accumulated at the sites of mineral deposits, whereas undercarboxylated GRP was predominant in calcified aortic valve disease valvular interstitial cells. Mineral-bound GRP, MGP, and fetuin-A were identified by mass spectrometry. Using an ex vivo model of vascular calcification, γ-carboxylated GRP but not undercarboxylated GRP was shown to inhibit calcification and osteochondrogenic differentiation through α-smooth muscle actin upregulation and osteopontin downregulation. Immunoprecipitation assays showed that GRP is part of an MGP-fetuin-A complex at the sites of valvular calcification. Moreover, extracellular vesicles released from normal vascular smooth muscle cells are loaded with GRP, MGP, and fetuin-A, whereas under calcifying conditions, released extracellular vesicles show increased calcium loading and GRP and MGP depletion. CONCLUSIONS: GRP is an inhibitor of vascular and valvular calcification involved in calcium homeostasis. Its function might be associated with prevention of calcium-induced signaling pathways and direct mineral binding to inhibit crystal formation/maturation. Our data show that GRP is a new player in mineralization competence of extracellular vesicles possibly associated with the fetuin-A-MGP calcification inhibitory system. GRP activity was found to be dependent on its γ-carboxylation status, with potential clinical relevance.


Aortic Valve Stenosis/prevention & control , Aortic Valve/pathology , Calcinosis/prevention & control , Calcium/metabolism , Coronary Artery Disease/prevention & control , Proteins/metabolism , Vascular Calcification/prevention & control , Actins/metabolism , Adult , Aged , Aged, 80 and over , Aorta/metabolism , Aorta/pathology , Aortic Valve/metabolism , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Calcinosis/genetics , Calcinosis/metabolism , Calcinosis/pathology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Case-Control Studies , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Coronary Vessels/metabolism , Coronary Vessels/pathology , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Gene Expression Regulation , Humans , Intercellular Signaling Peptides and Proteins , Intracellular Signaling Peptides and Proteins , Male , Middle Aged , Osteocalcin/genetics , Osteocalcin/metabolism , Proteins/genetics , Tissue Culture Techniques , Vascular Calcification/genetics , Vascular Calcification/metabolism , Vascular Calcification/pathology , alpha-2-HS-Glycoprotein/metabolism , Matrix Gla Protein
8.
Biomed Res Int ; 2014: 340216, 2014.
Article En | MEDLINE | ID: mdl-24949434

Gla-rich protein (GRP) was described in sturgeon as a new vitamin-K-dependent protein (VKDP) with a high density of Gla residues and associated with ectopic calcifications in humans. Although VKDPs function has been related with γ-carboxylation, the Gla status of GRP in humans is still unknown. Here, we investigated the expression of recently identified GRP spliced transcripts, the γ-carboxylation status, and its association with ectopic calcifications, in skin basal cell and breast carcinomas. GRP-F1 was identified as the predominant splice variant expressed in healthy and cancer tissues. Patterns of γ-carboxylated GRP (cGRP)/undercarboxylated GRP (ucGRP) accumulation in healthy and cancer tissues were determined by immunohistochemistry, using newly developed conformation-specific antibodies. Both GRP protein forms were found colocalized in healthy tissues, while ucGRP was the predominant form associated with tumor cells. Both cGRP and ucGRP found at sites of microcalcifications were shown to have in vitro calcium mineral-binding capacity. The decreased levels of cGRP and predominance of ucGRP in tumor cells suggest that GRP may represent a new target for the anticancer potential of vitamin K. Also, the direct interaction of cGRP and ucGRP with BCP crystals provides a possible mechanism explaining GRP association with pathological mineralization.


Breast Neoplasms/metabolism , Calcinosis , Carcinoma, Basal Cell/metabolism , Skin Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Basal Cell/pathology , Female , Humans , Naphthoquinones , Osteocalcin/metabolism , Skin Neoplasms/pathology , Vitamin K/metabolism , alpha-Galactosidase/metabolism
9.
Mol Nutr Food Res ; 58(8): 1636-46, 2014 Aug.
Article En | MEDLINE | ID: mdl-24867294

SCOPE: Gla-rich protein (GRP) is a vitamin K dependent protein, characterized by a high density of γ-carboxylated Glu residues, shown to accumulate in mouse and sturgeon cartilage and at sites of skin and vascular calcification in humans. Therefore, we investigated the involvement of GRP in pathological calcification in osteoarthritis (OA). METHODS AND RESULTS: Comparative analysis of GRP patterning at transcriptional and translational levels was performed between controls and OA patients. Using a RT-PCR strategy we unveiled two novel splice variants in human-GRP-F5 and F6-potentially characterized by the loss of full γ-carboxylation and secretion functional motifs. GRP-F1 is shown to be the predominant splice variant expressed in mouse and human adult tissues, particularly in OA cartilage, while an overexpressing human cell model points it as the major γ-carboxylated isoform. Using validated conformational antibodies detecting carboxylated or undercarboxylated GRP (c/uc GRP), we have demonstrated cGRP accumulation in controls, whereas ucGRP was the predominant form in OA-affected tissues, colocalizing at sites of ectopic calcification. CONCLUSION: Overall, our results indicate the predominance of GRP-F1, and a clear association of ucGRP with OA cartilage and synovial membrane. Levels of vitamin K should be further assessed in these patients to determine its potential therapeutic use as a supplement in OA treatment.


Alternative Splicing , Calcinosis/etiology , Cartilage/metabolism , Osteoarthritis/metabolism , Protein Processing, Post-Translational , Proteins/metabolism , Aged , Amino Acid Sequence , Animals , Cartilage/embryology , Extracellular Matrix Proteins , Female , Glutamic Acid/metabolism , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins , Intracellular Signaling Peptides and Proteins , Male , Mice , Molecular Sequence Data , Organ Specificity , Osteoarthritis/genetics , Osteoarthritis/pathology , Osteoarthritis/physiopathology , Proteins/chemistry , Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Species Specificity
10.
Biochimie ; 94(5): 1128-34, 2012 May.
Article En | MEDLINE | ID: mdl-22285966

FHL2 is a multifunctional protein involved in gene transcription regulation and cytoarchitecture modulation that has been recently associated with epithelial-mesenchymal transition (EMT) in colon cancer. Overexpression of FHL2 in a fish pre-osteoblastic cell line promoted cell dedifferentiation and impaired its extracellular matrix mineralization capacity. Cell cultures also acquired a novel three-dimensional structure organization, their proliferation rate was enhanced and gene expression profile was altered in agreement with an EMT-like phenotype upon overexpression of FHL2. Altogether, our results provide additional support to the relevance of FHL2 for cell differentiation and its association with hallmarks of cancer phenotype.


Epithelial-Mesenchymal Transition/physiology , Sea Bream/metabolism , Transcription Factors/metabolism , Alkaline Phosphatase/metabolism , Animals , Blotting, Western , Cell Line , Cell Proliferation , Collagen/metabolism , Epithelial-Mesenchymal Transition/genetics , Glycosaminoglycans/metabolism , Real-Time Polymerase Chain Reaction , Sea Bream/genetics , Transcription Factors/genetics
11.
Cell Mol Life Sci ; 69(3): 423-34, 2012 Feb.
Article En | MEDLINE | ID: mdl-21739231

Four-and-a-half LIM domains protein 2 (FHL2) is involved in major cellular mechanisms such as regulation of gene transcription and cytoskeleton modulation, participating in physiological control of cardiogenesis and osteogenesis. Knowledge on underlying mechanisms is, however, limited. We present here new data on FHL2 protein and its role during vertebrate development using a marine teleost fish, the gilthead seabream (Sparus aurata L.). In silico comparison of vertebrate protein sequences and prediction of LIM domain three-dimensional structure revealed a high degree of conservation, suggesting a conserved function throughout evolution. Determination of sites and levels of FHL2 gene expression in seabream indicated a central role for FHL2 in the development of heart and craniofacial musculature, and a potential role in tissue calcification. Our data confirmed the key role of FHL2 protein during vertebrate development and gave new insights into its particular involvement in craniofacial muscle development and specificity for slow fibers.


LIM Domain Proteins/metabolism , Muscle Development/genetics , Sea Bream/growth & development , Amino Acid Sequence , Animals , Evolution, Molecular , Gene Expression Regulation , LIM Domain Proteins/chemistry , LIM Domain Proteins/physiology , Molecular Sequence Data , Protein Structure, Tertiary
12.
Cytotechnology ; 55(1): 9-13, 2007 Sep.
Article En | MEDLINE | ID: mdl-19002990

Fishes have been recently recognized as a suitable model organism to study vertebrate physiological processes, in particular skeletal development and tissue mineralization. However, there is a lack of well characterized in vitro cell systems derived from fish calcified tissues. We describe here a protocol that was successfully used to develop the first calcified tissue-derived cell cultures of fish origin. Vertebra and branchial arches collected from young gilthead seabreams were fragmented then submitted to the combined action of collagenase and trypsin to efficiently release cells embedded in the collagenous extracellular matrix. Primary cultures were maintained under standard conditions and spontaneously transformed to form continuous cell lines suitable for studying mechanisms of tissue mineralization in seabream. This simple and inexpensive protocol is also applicable to other calcified tissues and species by adjusting parameters to each particular case.

13.
Bone ; 39(6): 1373-81, 2006 Dec.
Article En | MEDLINE | ID: mdl-16919510

Bone morphogenetic protein 2 (BMP-2) is a secreted signaling molecule that acts as an inducer of bone formation and a regulator of embryonic development. The objectives of this work were as follows: (1) to clone the full-length cDNA of BMP-2 in a marine fish model, (2) analyze its gene expression during development, in adult tissues and in cell lines, and (3) identify protein conserved features of vertebrate BMP-2. Using a combination of RT- and 5'-RACE-PCR, a 1653-bp fragment corresponding to Sparus aurata BMP-2 cDNA (SaBMP-2) was amplified. Levels of SaBMP-2 gene expression were estimated using quantitative real-time PCR and shown to be strongly increased (150-fold induction) at gastrulation, thus suggesting a key role for BMP-2 in fish development. Tissue distribution of SaBMP-2 mRNA revealed highest levels in the calcified tissues bone, caudal fin and scales and in liver. BMP-2 was also found to be highly expressed in S. aurata bone-derived cell lines VSa13 and VSa16 and to be up-regulated (more than 10-fold induction) in mineralized VSa13 chondrocyte-like cells. Using bioinformatic tools and all vertebrate protein sequences available, conserved features of BMP-2 were characterized. The mature protein was shown to be highly conserved across 20 species indicating that BMP-2 function has been conserved throughout evolution, a finding that is in agreement with the widely accepted view of the important role played by BMPs in vertebrate development.


Bone Morphogenetic Proteins/genetics , Sea Bream/genetics , Amino Acid Sequence , Animals , Base Sequence , Bone Morphogenetic Proteins/chemistry , Cell Line , Chondrocytes/metabolism , Cloning, Molecular , Conserved Sequence , DNA, Complementary/genetics , Evolution, Molecular , Gene Expression Regulation, Developmental , Molecular Sequence Data , Osteoblasts/metabolism , Phylogeny , Protein Structure, Tertiary , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sea Bream/growth & development , Tissue Distribution
...